Reservoir monitoring using borehole radars to improve oil recovery: Suggestions from 3D electromagnetic and fluid modeling

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. WB19-WB32 ◽  
Author(s):  
Feng Zhou ◽  
Mattia Miorali ◽  
Evert Slob ◽  
Xiangyun Hu

The recently developed smart well technology allows for sectionalized production control by means of downhole inflow control valves and monitoring devices. We consider borehole radars as permanently installed downhole sensors to monitor fluid evolution in reservoirs, and it provides the possibility to support a proactive control for smart well production. To investigate the potential of borehole radar on monitoring reservoirs, we establish a 3D numerical model by coupling electromagnetic propagation and multiphase flow modeling in a bottom-water drive reservoir environment. Simulation results indicate that time-lapse downhole radar measurements can capture the evolution of water and oil distributions in the proximity (order of meters) of a production well, and reservoir imaging with an array of downhole radars successfully reconstructs the profile of a flowing water front. With the information of reservoir dynamics, a proactive control procedure with smart well production is conducted. This method observably delays the water breakthrough and extends the water-free recovery period. To assess the potential benefits that borehole radar brings to hydrocarbon recovery, three production strategies are simulated in a thin oil rim reservoir scenario, i.e., a conventional well production, a reactive production, and a combined production supported by borehole radar monitoring. Relative to the reactive strategy, the combined strategy further reduces cumulative water production by 66.89%, 1.75%, and 0.45% whereas it increases cumulative oil production by 4.76%, 0.57%, and 0.31%, in the production periods of 1 year, 5 years, and 10 years, respectively. The quantitative comparisons reflect that the combined production strategy has the capability of accelerating oil production and suppressing water production, especially in the early stage of production. We suggest that borehole radar is a promising reservoir monitoring technology, and it has the potential to improve oil recovery efficiency.

2016 ◽  
Vol 18 (2) ◽  
pp. 133
Author(s):  
L.K. Altunina ◽  
I.V. Kuvshinov ◽  
V.A. Kuvshinov ◽  
V.S. Ovsyannikova ◽  
D.I. Chuykina ◽  
...  

The results of a pilot application of a chemical composition for enhanced oil recovery developed at the IPC SB RAS are presented. The EOR-composition was tested in 2014 at the Permian-Carboniferous heavy oil deposit at the Usinskoye oil field. It is very effective for an increase in oil production rate and decrease in water cuttings of well production. In terms of the additionally produced oil, the resulting effect is up to 800 tons per well and its duration is up to 6 months. The application of technologies of low-productivity-well stimulation using the oil-displacing IKhNPRO system with controlled viscosity and alkalinity is thought to be promising. This composition is proposed for the cold’ stimulation of high-viscosity oil production as an alternative to thermal methods.


Author(s):  
Vladimir E. VERSHININ ◽  
Sergey G. NIKULIN ◽  
Andrej A. Stupnikov

In recent years, in the oil production industry there is a tendency of mass use of stationary multiphase metering units for determining oil, water, and associated gas flow rates in the recoverable well production. Automated group metering units, allowing to cover the whole group of wells in rotation metering mode, became widespread. The necessity of equipping wells with individual or group measuring devices is dictated, first of all, by the economic tasks of improving oil recovery factor and production optimization. In these conditions, the task of periodic verification of stationary measuring devices in the field with the help of mobile standards-measuring devices of higher accuracy class becomes urgent. The standard’s mobility and the need to work in the field with fluids of different composition significantly complicates the task of creating such a device. The practicality and economy of the created units first of all depends on a choice of a measuring method determining the design of the unit. This article analyzes the existing types of equipment for measuring oil, gas, and water consumption at the oil production wells. Showing the main advantages and disadvantages of each of them, this paper proves the necessity of using complex solutions based on different physical principles to improve the accuracy of measurements. The authors have proposed a combined scheme of a mobile standard of the 2nd category with a dynamic method for measuring the phase rates at the core. The unit performs a multi-stage partial separation of the input multiphase flow into liquid and gas phases and determines the fractions of water and oil in the liquid stream using a hydrostatic-type mixture composition analyzer. In addition, this article indicates the ways of increasing the accuracy of the measuring installation.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Youwei He ◽  
Shiqing Cheng ◽  
Zhe Sun ◽  
Zhi Chai ◽  
Zhenhua Rui

Abstract Well production rates decline quickly in the tight reservoirs, and enhanced oil recovery (EOR) is needed to increase productivity. Conventional flooding from adjacent wells is inefficient in the tight formations, and Huff-n-Puff also fails to achieve the expected productivity. This paper investigates the feasibility of the inter-fracture injection and production (IFIP) method to increase oil production rates of horizontal wells. Three multi-fractured horizontal wells (MFHWs) are included in a cluster well. The fractures with even and odd indexes are assigned to be injection fractures (IFs) and recovery fractures (RFs). The injection/production schedule includes synchronous inter-fracture injection and production (s-IFIP) and asynchronous inter-fracture injection and production (a-IFIP). The production performances of three MFHWs are compared by using four different recovery approaches based on numerical simulation. Although the number of RFs is reduced by about 50% for s-IFIP and a-IFIP, they achieve much higher oil rates than depletion and CO2 Huff-n-Puff. The sensitivity analysis is performed to investigate the impact of parameters on IFIP. The spacing between IFs and RFs, CO2 injection rates, and connectivity of fracture networks affect oil production significantly, followed by the length of RFs, well spacing among MFHWs, and the length of IFs. The suggested well completion scheme for the IFIP methods is presented. This work discusses the ability of the IFIP method in enhancing the oil production of MFHWs.


2013 ◽  
Vol 807-809 ◽  
pp. 2629-2633
Author(s):  
Guang Xi Shen ◽  
Ji Ho Lee ◽  
Kun Sang Lee

It is well known that gel treatment has outstanding potential to delay water breakthrough and reduce water production. However, it causes the decrease of oil production by permeability reduction, even though it is not as much as reduction of water production. For this reason, to improve oil production with substantial reduction of water production, performances of gel treatments through the combination of horizontal and/or vertical wells were assessed and compared. An extensive numerical simulation was executed for four different well configurations under gel treatment associated with waterflood to accomplish the purpose of this study. Performances were compared according to cumulative oil recovery and water-oil ratio at the production well for different systems. Though all of well configurations considered in this study effectively decreased the water production compared with waterflood, applications of horizontal wells led to much higher oil recovery than vertical well because of improved sweep efficiency. Based on these results, the potential of horizontal wells was examined through different scenarios in combinations of injection and production wells. Furthermore, various well lengths of injectors or producers were assessed for horizontal wells. Because cross-flow between layers dominates performance of gel treatment, effects of vertical permeability were also investigated in application of gel treatment with horizontal well. Longer wells and higher cross-flow results in better performance. This study represents that effectiveness of horizontal wells for gel treatment even for reservoirs having dominant cross-flow.


2020 ◽  
Vol 126 (1) ◽  
pp. 30-33
Author(s):  
N. R. Yarkeeva ◽  
◽  
D. V. Imangulov ◽  

The article discusses one of the most promising oil recovery methods - sidetracking (sidetracking), explores the development status of formation that use this method, and justifies the selection of candidate wells for its implementation. Based on the example of the Variogan field, the effectiveness of the sidetracking operations was determined depending on the increase in well production. Using the obtained dependence, we can estimate the rate of increase in cumulative oil production.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Pratik Prashant Pawar ◽  
Annamma Anil Odaneth ◽  
Rajeshkumar Natwarlal Vadgama ◽  
Arvind Mallinath Lali

Abstract Background Recent trends in bioprocessing have underlined the significance of lignocellulosic biomass conversions for biofuel production. These conversions demand at least 90% energy upgradation of cellulosic sugars to generate renewable drop-in biofuel precursors (Heff/C ~ 2). Chemical methods fail to achieve this without substantial loss of carbon; whereas, oleaginous biological systems propose a greener upgradation route by producing oil from sugars with 30% theoretical yields. However, these oleaginous systems cannot compete with the commercial volumes of vegetable oils in terms of overall oil yields and productivities. One of the significant challenges in the commercial exploitation of these microbial oils lies in the inefficient recovery of the produced oil. This issue has been addressed using highly selective oil capturing agents (OCA), which allow a concomitant microbial oil production and in situ oil recovery process. Results Adsorbent-based oil capturing agents were employed for simultaneous in situ oil recovery in the fermentative production broths. Yarrowia lipolytica, a model oleaginous yeast, was milked incessantly for oil production over 380 h in a media comprising of glucose as a sole carbon and nutrient source. This was achieved by continuous online capture of extracellular oil from the aqueous media and also the cell surface, by fluidizing the fermentation broth over an adsorbent bed of oil capturing agents (OCA). A consistent oil yield of 0.33 g per g of glucose consumed, corresponding to theoretical oil yield over glucose, was achieved using this approach. While the incorporation of the OCA increased the oil content up to 89% with complete substrate consumptions, it also caused an overall process integration. Conclusion The nondisruptive oil capture mediated by an OCA helped in accomplishing a trade-off between microbial oil production and its recovery. This strategy helped in realizing theoretically efficient sugar-to-oil bioconversions in a continuous production process. The process, therefore, endorses a sustainable production of molecular drop-in equivalents through oleaginous yeasts, representing as an absolute microbial oil factory.


2014 ◽  
Vol 17 (03) ◽  
pp. 304-313 ◽  
Author(s):  
A.M.. M. Shehata ◽  
M.B.. B. Alotaibi ◽  
H.A.. A. Nasr-El-Din

Summary Waterflooding has been used for decades as a secondary oil-recovery mode to support oil-reservoir pressure and to drive oil into producing wells. Recently, the tuning of the salinity of the injected water in sandstone reservoirs was used to enhance oil recovery at different injection modes. Several possible low-salinity-waterflooding mechanisms in sandstone formations were studied. Also, modified seawater was tested in chalk reservoirs as a tertiary recovery mode and consequently reduced the residual oil saturation (ROS). In carbonate formations, the effect of the ionic strength of the injected brine on oil recovery has remained questionable. In this paper, coreflood studies were conducted on Indiana limestone rock samples at 195°F. The main objective of this study was to investigate the impact of the salinity of the injected brine on the oil recovery during secondary and tertiary recovery modes. Various brines were tested including deionized water, shallow-aquifer water, seawater, and as diluted seawater. Also, ions (Na+, Ca2+, Mg2+, and SO42−) were particularly excluded from seawater to determine their individual impact on fluid/rock interactions and hence on oil recovery. Oil recovery, pressure drop across the core, and core-effluent samples were analyzed for each coreflood experiment. The oil recovery using seawater, as in the secondary recovery mode, was, on the average, 50% of original oil in place (OOIP). A sudden change in the salinity of the injected brine from seawater in the secondary recovery mode to deionized water in the tertiary mode or vice versa had a significant effect on the oil-production performance. A solution of 20% diluted seawater did not reduce the ROS in the tertiary recovery mode after the injection of seawater as a secondary recovery mode for the Indiana limestone reservoir. On the other hand, 50% diluted seawater showed a slight change in the oil production after the injection of seawater and deionized water slugs. The Ca2+, Mg2+, and SO42− ions play a key role in oil mobilization in limestone rocks. Changing the ion composition of the injected brine between the different slugs of secondary and tertiary recovery modes showed a measurable increase in the oil production.


2011 ◽  
Vol 14 (01) ◽  
pp. 120-128 ◽  
Author(s):  
Guanglun Lei ◽  
Lingling Li ◽  
Hisham A. Nasr-El-Din

Summary A common problem for oil production is excessive water production, which can lead to rapid productivity decline and significant increases in operating costs. The result is often a premature shut-in of wells because production has become uneconomical. In water injectors, the injection profiles are uneven and, as a result, large amounts of oil are left behind the water front. Many chemical systems have been used to control water production and improve recovery from reservoirs with high water cut. Inorganic gels have low viscosity and can be pumped using typical field mixing and injection equipment. Polymer or crosslinked gels, especially polyacrylamide-based systems, are mainly used because of their relatively low cost and their supposed selectivity. In this paper, microspheres (5–30 μm) were synthesized using acrylamide monomers crosslinked with an organic crosslinker. They can be suspended in water and can be pumped in sandstone formations. They can plug some of the pore throats and, thus, force injected water to change its direction and increase the sweep efficiency. A high-pressure/high-temperature (HP/HT) rheometer was used to measure G (elastic modulus) and G" (viscous modulus) of these aggregates. Experimental results indicate that these microspheres are stable in solutions with 20,000 ppm NaCl at 175°F. They can expand up to five times their original size in deionized water and show good elasticity. The results of sandpack tests show that the microspheres can flow through cores with permeability greater than 500 md and can increase the resistance factor by eight to 25 times and the residual resistance factor by nine times. The addition of microspheres to polymer solutions increased the resistance factor beyond that obtained with the polymer solution alone. Field data using microspheres showed significant improvements in the injection profile and enhancements in oil production.


2021 ◽  
Author(s):  
Valentina Zharko ◽  
Dmitriy Burdakov

Abstract The paper presents the results of a pilot project implementing WAG injection at the oilfield with carbonate reservoir, characterized by low efficiency of traditional waterflooding. The objective of the pilot project was to evaluate the efficiency of this enhanced oil recovery method for conditions of the specific oil field. For the initial introduction of WAG, an area of the reservoir with minimal potential risks has been identified. During the test injections of water and gas, production parameters were monitored, including the oil production rates of the reacting wells and the water and gas injection rates of injection wells, the change in the density and composition of the produced fluids. With first positive results, the pilot area of the reservoir was expanded. In accordance with the responses of the producing wells to the injection of displacing agents, the injection rates were adjusted, and the production intensified, with the aim of maximizing the effect of WAG. The results obtained in practice were reproduced in the simulation model sector in order to obtain a project curve characterizing an increase in oil recovery due to water-alternating gas injection. Practical results obtained during pilot testing of the technology show that the injection of gas and water alternately can reduce the water cut of the reacting wells and increase overall oil production, providing more efficient displacement compared to traditional waterflooding. The use of WAG after the waterflooding provides an increase in oil recovery and a decrease in residual oil saturation. The water cut of the produced liquid decreased from 98% to 80%, an increase in oil production rate of 100 tons/day was obtained. The increase in the oil recovery factor is estimated at approximately 7.5% at gas injection of 1.5 hydrocarbon pore volumes. Based on the received results, the displacement characteristic was constructed. Methods for monitoring the effectiveness of WAG have been determined, and studies are planned to be carried out when designing a full-scale WAG project at the field. This project is the first pilot project in Russia implementing WAG injection in a field with a carbonate reservoir. During the pilot project, the technical feasibility of implementing this EOR method was confirmed, as well as its efficiency in terms of increasing the oil recovery factor for the conditions of the carbonate reservoir of Eastern Siberia, characterized by high water cut and low values of oil displacement coefficients during waterflooding.


Sign in / Sign up

Export Citation Format

Share Document