A novel semiairborne frequency-domain controlled-source electromagnetic system: Three-dimensional inversion of semiairborne data from the flight experiment over an ancient mining area near Schleiz, Germany

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. E281-E292 ◽  
Author(s):  
Maria V. Smirnova ◽  
Michael Becken ◽  
Christian Nittinger ◽  
Pritam Yogeshwar ◽  
Wiebke Mörbe ◽  
...  

We have developed a novel semiairborne frequency-domain electromagnetic (EM) system and successfully tested it within the DESMEX project. The semiairborne approach relies on the fact that part of the system is positioned on the ground and the rest is airborne. This allows us to take advantage of ground and airborne techniques. In particular, a high-moment transmitter can be installed on the earth’s surface, which enables us to inject and induce strong EM fields in the subsurface. Moreover, galvanic coupling is possible, which is an advantage if additional ground stations are deployed. The airborne receivers allow easier, significantly faster, and more uniform spatial coverage of the study area than the ground receivers. In our implementation, transmitters and electric field receivers are installed on the ground. Magnetic field sensors, such as commercially available fluxgate, total field magnetometers, and newly developed induction coils, are installed on a helicopter-towed bird. First, we describe the results of a semiairborne survey performed in a selected area with ancient mining located in the Saxothuringian zone near Schleiz, Germany. A 3D semiairborne inversion model represents several conductive anomalies, which agree well with the outcrop of alum shale formations at the surface. In addition, the shallow parts of the semiairborne model are compared with the result of an independent helicopter-borne survey, which consists of stepwise 1D models.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Konrad Rolle ◽  
Dmytro Yaremkevich ◽  
Alexey V. Scherbakov ◽  
Manfred Bayer ◽  
George Fytas

AbstractHypersonic phononic bandgap structures confine acoustic vibrations whose wavelength is commensurate with that of light, and have been studied using either time- or frequency-domain optical spectroscopy. Pulsed pump-probe lasers are the preferred instruments for characterizing periodic multilayer stacks from common vacuum deposition techniques, but the detection mechanism requires the injected sound wave to maintain coherence during propagation. Beyond acoustic Bragg mirrors, frequency-domain studies using a tandem Fabry–Perot interferometer (TFPI) find dispersions of two- and three-dimensional phononic crystals (PnCs) even for highly disordered samples, but with the caveat that PnCs must be transparent. Here, we demonstrate a hybrid technique for overcoming the limitations that time- and frequency-domain approaches exhibit separately. Accordingly, we inject coherent phonons into a non-transparent PnC using a pulsed laser and acquire the acoustic transmission spectrum on a TFPI, where pumped appear alongside spontaneously excited (i.e. incoherent) phonons. Choosing a metallic Bragg mirror for illustration, we determine the bandgap and compare with conventional time-domain spectroscopy, finding resolution of the hybrid approach to match that of a state-of-the-art asynchronous optical sampling setup. Thus, the hybrid pump–probe technique retains key performance features of the established one and going forward will likely be preferred for disordered samples.


2021 ◽  
Vol 303 ◽  
pp. 01040
Author(s):  
Fan Feng ◽  
Xibing Li ◽  
Shaojie Chen ◽  
Dingxiao Peng ◽  
Zhuang Bian

For mining using the caving and filling methods in metal mines, determining a suitable size for the isolated pillars—the connecting part of the extension from shallow to deep—is crucial for ensuring safety and efficiency. Considering actual cases involving deep caving and cut-and-fill mining in the Chifeng Hongling lead-zinc mine in Inner Mongolia, China, the reserved thickness range of the horizontal isolation layer is obtained via theoretical analysis. On this basis, the pre-processing software HyperMesh is used to build a high-precision hexahedral grid model of the mining area, and the three-dimensional geological model of the mining area is imported into the finite-difference software FLAC3D. The stress field, displacement field, and plastic area evolution law of pillars (horizontally isolated pillars and adjacent rib pillars) in the stope of the ninth middle section after excavation are analyzed via numerical simulation inversion of the selected scheme of horizontal isolated pillars. The numerical simulation results show that the scheme employed to retain the upper horizontal isolated pillars in the ninth middle section involves reserving thicknesses of 8 m and 32 m at average ore body thicknesses of 15 m and 35 m, respectively. These results can provide theoretical guidance and a basis for safe and efficient mining of deep metal mines.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 370 ◽  
Author(s):  
Jianing Li ◽  
Huaping Wang ◽  
Juan Cui ◽  
Qing Shi ◽  
Zhiqiang Zheng ◽  
...  

Magnetic micromachines as wireless end-effectors have been widely applied for drug discovery and regenerative medicine. Yet, the magnetic assembly of arbitrarily shaped cellular microstructures with high efficiency and flexibility still remains a big challenge. Here, a novel clamp-shape micromachine using magnetic nanoparticles was developed for the indirect untethered bioassembly. With a multi-layer template, the nickel nanoparticles were mixed with polydimethylsiloxane (PDMS) for mold replication of the micromachine with a high-resolution and permeability. To actuate the micromachine with a high flexibility and large scalable operation range, a multi-pole electromagnetic system was set up to generate a three-dimensional magnetic field in a large workspace. Through designing a series of flexible translations and rotations with a velocity of 15mm/s and 3 Hz, the micromachine realized the propel-and-throw strategy to overcome the inevitable adhesion during bioassembly. The hydrogel microstructures loaded with different types of cells or the bioactive materials were effectively assembled into microtissues with reconfigurable shape and composition. The results indicate that indirect magnetic manipulation can perform an efficient and versatile bioassembly of cellular micromodules, which is promising for drug trials and modular tissue engineering.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4595
Author(s):  
Nuno Simões ◽  
Joana Prata ◽  
António Tadeu

This paper sets out a three-dimensional (3D) boundary element method (BEM) formulation in the frequency domain to simulate heat transfer through a point thermal bridge (PTB) at a corner in a building envelope. The main purpose was to quantify the dynamic effect of a geometrical PTB in terms of distribution of temperatures and heat fluxes, which is useful for evaluating moisture condensation risk. The numerical model is first validated experimentally using a hot box to measure the dynamic heat behavior of a 3D timber building corner. The proposed model is then used to study the dynamic thermal bridging effect in the vicinity of a 3D concrete corner. Given the importance of the risk of condensation, this study looks at the influence of an insulating material and its position on the temperature and heat flux distribution through the PTB under steady state and dynamic conditions.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 471
Author(s):  
Yidan Ding ◽  
Guoqing Ma ◽  
Shengqing Xiong ◽  
Haoran Wang

Gravity migration is a fast imaging technique based on the migration concept to obtain subsurface density distribution. For higher resolution of migration imaging results, we propose a 3D regularized focusing migration method that implements migration imaging of an entire gravity survey with a focusing stabilizer based on regularization theory. When determining the model parameters, the iterative direction is chosen as the conjugate migration direction, and the step size is selected on the basis of the Wolfe–Powell conditions. The model tests demonstrate that the proposed method can improve the resolution and precision of imaging results, especially for blocky structures. At the same time, the method has high computational efficiency, which allows rapid imaging for large-scale gravity data. It also has high stability in noisy conditions. The developed novel method is applied to interpret gravity data collected from the skarn-type iron deposits in Yucheng, Shandong province. Migration results show that the depth of the buried iron ore in this area is 750–1500 m, which is consistent with the drilling data. We also provide recommendations for further mineral exploration in the survey area. This method can be used to complete rapid global imaging of large mining areas and it provides important technical support for exploration of deep, concealed deposits.


Sign in / Sign up

Export Citation Format

Share Document