Organic matter-driven electrical resistivity of immature lacustrine oil-prone shales

Geophysics ◽  
2021 ◽  
pp. 1-48
Author(s):  
Jianliang Jia ◽  
Renjie Zhou ◽  
Zhaojun Liu ◽  
Xuehui Han ◽  
Yuan Gao

Organic matter (OM) and minerals are major particle components in lacustrine organic-rich shales. Their association and distribution control the development of primary pore space. The resistivity response of OM-driven by modifying the pore-space volume and structure in organic-rich shales of the virgin zone is still unclear. Based on a detailed study of geochemical, mineralogical, and geophysical properties from immature lacustrine oil-prone shales of the Songliao Basin (NE China), we observe a novel continuous variation of electrical resistivity driven by large ranges of total organic carbon (TOC) content (0.64–24.51 wt.%). The reduced resistivity at low TOC content (<4.5 wt.%) and then enhanced resistivity at high TOC content (>4.5 wt.%) are present in our immature shales. These variations in electrical resistivity are confirmed by fluid (S1) and solid organic compounds (S2). Furthermore, clay and detrital minerals in shales contribute to the variation of electrical resistivity as well as OMs at both low and high TOC contents. The electrical resistivity of shales is closely related to pore-space volume and structure for the electrical flow pathway. Two resistivity trends are highlighted by pore parameters such as pore volume, throat/pore ratio, pore diameter, and bulk density. Although reduced amounts and the arrangement of large pores for low TOC content cannot decrease the conduction, enhanced additional clay conduction and low OM concentration reduce the resistivity of shales. Moreover, increased amounts of non-conductive fluid and solid organic compounds and the effect of OM filling on pore space during high TOC content enhance the resistivity of shales. Thus, modified minerals and pore space driven by various OMs affect the electrical resistivity of immature shales. These results improve the understanding of OM-driven conduction in shales and contribute to the evaluation of source rocks using well log method.

2021 ◽  
Vol 12 ◽  
Author(s):  
Robert Stasiuk ◽  
Renata Matlakowska

Nickel and vanadyl porphyrins belong to the so-called fossil geo- or sedimentary porphyrins. They occur in different types of organic matter-rich sediments but mostly occur in crude oils and their source rocks, oil shales, coals, and oil sands. In this study, we aimed to understand the process of bacterial transformation of geoporphyrins occurring in the subsurface shale rock (Fore-Sudetic Monocline, SW Poland). We studied these transformations in rock samples directly obtained from the field; in rock samples treated with bacterial strain isolated from shale rock (strain LM27) in the laboratory; and using synthetic nickel and vanadyl porphyrins treated with LM27. Our results demonstrate the following: (i) cleavage and/or degradation of aliphatic and aromatic substituents of porphyrins; (ii) degradation of porphyrin (tetrapyrrole) ring; (iii) formation of organic compounds containing 1, 2, or 3 pyrrole rings; (iv) formation of nickel- or vanadium-containing organic compounds; and (v) mobilization of nickel and vanadium. Our results also showed that the described bacterial processes change the composition and content of geoporphyrins, composition of extractable organic matter, as well as nickel and vanadium content in shale rock.


2020 ◽  
Author(s):  
Dina Gafurova ◽  
Anton Kalmykov ◽  
Dmitriy Korost ◽  
Tikhonova Margarita ◽  
Vidishcheva Olesia

&lt;p&gt;The Domanic and Bazhenov Formations are the largest unconventional oil and gas resources in Russia. In this regard, research of mechanisms and transformation features of pore space structure, as well as hydrocarbon fluids composition are of greatest interest. In recent time technologies for modeling of thermal maturation of rocks under close to reservoir conditions similar, such as pyrolysis and aqua pyrolysis can be used. The natural process of organic matter maturation has a direct impact on the rock pore space alterations. Experimental studies of rocks (more than 100 experiments) with monitoring of the pore space using computer microtomography were performed. As a result of research, it was possible to clarify the influence of rock characteristics on the transformation of the pore space, as well as on the hydrocarbons composition. The structural features of the mineral part of the rock control the distribution of organic matter: for rocks with a layered distribution of organic matter, the formation of a crack system is characteristic. In samples with a massive structure, newly formed pores were noted. The rocks with the highest organic matter content from 20% were characterized by the formation of lenses (Fig. 1). The content of organic matter and its maturity directly affect the volume of the newly formed pore space.&lt;/p&gt;&lt;p&gt;Performed investigations allowed to reveal the trends of hydrocarbons generation in source rocks and unconventional reservoirs formation. Also heating of rocks by various methods under reservoir conditions approved potential of tertiary methods of reservoir stimulation. Pyrolysis in-situ of Bazhenov and Domanic source rocks would allow to generate &amp;#8220;synthetic&amp;#8221; oil of similar to natural one composition and increase permeability of rocks by pores and cracks formation.&lt;/p&gt;&lt;p&gt;This work was partially (fully) supported by RFBR grant 18-35-20036.&lt;/p&gt;


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


2021 ◽  
pp. 014459872110310
Author(s):  
Min Li ◽  
Xiongqi Pang ◽  
Guoyong Liu ◽  
Di Chen ◽  
Lingjian Meng ◽  
...  

The fine-grained rocks in the Paleogene Shahejie Formation in Nanpu Sag, Huanghua Depression, Bohai Bay Basin, are extremely important source rocks. These Paleogene rocks are mainly subdivided into organic-rich black shale and gray mudstone. The average total organic carbon contents of the shale and mudstone are 11.5 wt.% and 8.4 wt.%, respectively. The average hydrocarbon (HC)-generating potentials (which is equal to the sum of free hydrocarbons (S1) and potential hydrocarbons (S2)) of the shale and mudstone are 39.3 mg HC/g rock and 28.5 mg HC/g rock, respectively, with mean vitrinite reflectance values of 0.82% and 0.81%, respectively. The higher abundance of organic matter in the shale than in the mudstone is due mainly to paleoenvironmental differences. The chemical index of alteration values and Na/Al ratios reveal a warm and humid climate during shale deposition and a cold and dry climate during mudstone deposition. The biologically derived Ba and Ba/Al ratios indicate high productivity in both the shale and mudstone, with relatively low productivity in the shale. The shale formed in fresh to brackish water, whereas the mudstone was deposited in fresh water, with the former having a higher salinity. Compared with the shale, the mudstone underwent higher detrital input, exhibiting higher Si/Al and Ti/Al ratios. Shale deposition was more dysoxic than mudstone deposition. The organic matter enrichment of the shale sediments was controlled mainly by reducing conditions followed by moderate-to-high productivity, which was promoted by a warm and humid climate and salinity stratification. The organic matter enrichment of the mudstone was less than that of the shale and was controlled by relatively oxic conditions.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 523
Author(s):  
Gabriel Ricardo Cifuentes ◽  
Juan Jiménez-Millán ◽  
Claudia Patricia Quevedo ◽  
Fernando Nieto ◽  
Javier Cuadros ◽  
...  

In this investigation, we showed that high salinity promoted by hydrothermal inputs, reducing conditions of sediments with high content in organic matter, and the occurrence of an appropriate clay mineral precursor provide a suitable framework for low-temperature illitization processes. We studied the sedimentary illitization process that occurs in carbonaceous sediments from a lake with saline waters (Sochagota Lake, Colombia) located at a tropical latitude. Water isotopic composition suggests that high salinity was produced by hydrothermal contribution. Materials accumulated in the Sochagota Lake’s southern entrance are organic matter-poor sediments that contain detrital kaolinite and quartz. On the other hand, materials formed at the central segment and near the lake exit (north portion) are enriched in organic matter and characterized by the crystallization of Fe-sulfides. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), and energy dispersive X-ray spectrometry (EDX) data allowed for the identification of illite and illite-dioctahedral vermiculite mixed layers (I-DV), which are absent in the southern sediments. High humidity and temperate climate caused the formation of small-sized metastable intermediates of I-DV particles by the weathering of the source rocks in the Sochagota Lake Basin. These particles were deposited in the low-energy lake environments (middle and north part). The interaction of these sediments enriched in organic matter with the saline waters of the lake enriched in hydrothermal K caused a reducing environment that favored Fe mobilization processes and its incorporation to I-DV mixed layers that acted as mineral precursor for fast low temperature illitization, revealing that in geothermal areas clays in lakes favor a hydrothermal K uptake.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 659
Author(s):  
Mingyang Wei ◽  
Zhidong Bao ◽  
Axel Munnecke ◽  
Wei Liu ◽  
G. William M. Harrison ◽  
...  

Just as in deep-water sedimentary environments, productive source rocks can be developed in an evaporitic platform, where claystones are interbedded with evaporites and carbonates. However, the impact of the paleoenvironment on the organic matter enrichment of shallow water source rocks in an evaporite series has not been well explored. In this study, two wells in the central uplift of the Tarim Basin were systematically sampled and analyzed for a basic geochemical study, including major elements, trace elements, and total organic carbon (TOC), to understand the relationship between TOC and the paleoenvironmental parameters, such as paleosalinity, redox, paleoclimate, paleo-seawater depth, and paleoproductivity. The results show that the Lower–Middle Cambrian mainly developed in a fluctuating salinity, weak anoxic to anoxic, continuous dry and hot, and proper shallow water environment. The interfingering section of evaporites, carbonates, and claystones of the Awatag Fm. have higher paleoproductivity and higher enrichment of organic matter. Paleosalinity, redox, paleoclimate, paleo-seawater depth, and paleoproductivity jointly control the organic matter enrichment of shallow water source rocks in the evaporite series. The degree of enrichment of organic matter in shallow water source rocks first increases and then decreases with the increase in paleosalinity. All the samples with high content of organic matter come from the shallower environment of the Awatag Fm.


Sign in / Sign up

Export Citation Format

Share Document