Sri Lanka Lifelines after the December 2004 Great Sumatra Earthquake and Tsunami

2006 ◽  
Vol 22 (3_suppl) ◽  
pp. 545-559 ◽  
Author(s):  
Donald Ballantyne

The water supply and transportation lifeline systems near the coastline of Sri Lanka were the most heavily affected by the December 2004 Great Sumatra earthquake and tsunami. The fishing and tourist industries were devastated; many fishing harbors were heavily damaged. Dozens of bridges in the highway and railroad system were damaged, primarily by erosion and scour. Portions of coastal road were washed away. However, most of the above-grade infrastructure components such as electrical distribution systems, water supply systems, communications systems, and bridges were inland and thus were not affected. Quickly distributing potable water to the affected areas was a challenge. International emergency responders provided portable, then permanent, water treatment facilities. An estimated 60,000 wells were inundated, 12,000 of which will require cleaning. Wells were being restored by pumping out the saltwater. Restoration was limited by the availability of equipment, labor, and supplies of critical resources. Sand for concrete to construct schools, hospitals, and housing was in very limited supply.

Author(s):  
Wenjin Xue ◽  
Christopher W. K. Chow ◽  
John van Leeuwen

Abstract The bacterial regrowth potential (BRP) method was utilised to indirectly measure the assimilable organic carbon (AOC) as an indicator for the assessment of the microbial regrowth potential in drinking water distribution systems. A model using various microbial growth parameters was developed in order to standardise the experimental interpretation for BRP measurement. This study used 82 experimental BRP data sets of water samples collected from the water treatment plant to locations (customer taps) in the distribution system. The data were used to model the BRP process (growth curve) by a data fitting procedure and to obtain a best-fitted equation. Statistical assessments and model validation for evaluating the equation obtained by fitting these 82 sets of data were conducted, and the results show average R2 values were 0.987 for treated water samples (collected at the plant prior to chlorination) and 0.983 for tap water (collected at the customer taps). The F values obtained from the F-test are all exceeded their corresponding F critical values, and the results from the t-test also showed a good outcome. These results indicate this model would be successfully applied in modelling BRP in drinking water supply systems.


2020 ◽  
Vol 10 (22) ◽  
pp. 8219
Author(s):  
Andrea Menapace ◽  
Ariele Zanfei ◽  
Manuel Felicetti ◽  
Diego Avesani ◽  
Maurizio Righetti ◽  
...  

Developing data-driven models for bursts detection is currently a demanding challenge for efficient and sustainable management of water supply systems. The main limit in the progress of these models lies in the large amount of accurate data required. The aim is to present a methodology for the generation of reliable data, which are fundamental to train anomaly detection models and set alarms. Thus, the results of the proposed methodology is to provide suitable water consumption data. The presented procedure consists of stochastic modelling of water request and hydraulic pipes bursts simulation to yield suitable synthetic time series of flow rates, for instance, inlet flows of district metered areas and small water supply systems. The water request is obtained through the superimposition of different components, such as the daily, the weekly, and the yearly trends jointly with a random normal distributed component based on the consumption mean and variance, and the number of users aggregation. The resulting request is implemented into the hydraulic model of the distribution system, also embedding background leaks and bursts using a pressure-driven approach with both concentrated and distributed demand schemes. This work seeks to close the gap in the field of synthetic generation of drinking water consumption data, by establishing a proper dedicated methodology that aims to support future water smart grids.


1988 ◽  
Vol 78 (2) ◽  
pp. 317-328 ◽  
Author(s):  
P. H. Langton ◽  
P. S. Cranston ◽  
P. Armitage

AbstractChironomid midges have been known to include parthenogenetic species for over a century. One of these species, Paratanytarsus grimmii (Schneider), cited under several different names here shown to be junior synonyms, has attained some notoriety as a pest. Its occurrence as a supposedly paedogenetic (actually pharate adult parthenogenetic) inhabitant of water distribution systems is discussed and related to its more usual occurrence in a variety of small water bodies including aquaria. New synonymy is proposed and a lectotype designated.


Author(s):  
Victor Khoruzhy ◽  
Tetіana Khomutetska ◽  
Igor Nedashkovskіy

Surface water bodies, which are sources of drinking water supply, receive a significant amount of pollution from wastewater. This negatively affects the ecological condition of water resources and poses a threat to the health and sanitary well-being of the population. The main pollutants of surface sources are: sewage of economic-fecal and industrial sewage, which contain organic pollutants, surfactants, heavy metal ions; oil products coming from industrial sites and urban areas; effluents from livestock farms and storage ponds of production waste; washing of mineral fertilizers and pesticides from agricultural lands. Adjustment of surface springs additionally affects the deterioration of water quality in them. Therefore, existing water treatment technologies may not always provide the required degree of drinking water purification. According to monitoring studies, more than 38% of water samples taken at centralized water supply facilities did not meet regulatory requirements. This situation encourages the search for ways that would create conditions for more efficient operation of water supply systems. Modernization of existing water supply facilities and application of new water treatment technologies can help solve the problem. The article illustrates constructive schemes of shore and channel water intake and treatment facilities, the use of which makes it possible to reduce the dirt retention load on the main treatment facilities, increase the reliability of fish fry protection and improve the ecological condition of reservoirs at water intake sites. For effective removal of organic matter at water treatment plants, it is advisable to use bioreactors and contact-clarifying filters. Such solutions allow not only to increase the productivity of the water treatment plant, but also significantly reduce its construction cost, simplify the operation of facilities and reduce annual operating costs.


Author(s):  
R. Farmani ◽  
Joe Dalton ◽  
Bambos Charalambous ◽  
Elizabeth Lawson ◽  
Sarah Bunney ◽  
...  

Abstract There is limited information about the current state of intermittent water supply (IWS) systems at the global level. A survey was carried out by the Intermittent Water Supply Specialist Group of the International Water Association (IWA IWS SG) to better understand the current state of these systems and challenges that water companies may have faced under COVID-19 pandemic and to capture successful management strategies applied by water utilities. The survey consisted of three parts: (1) general information about IWS systems, (2) current state of IWS and (3) resilience of IWS under COVID-19 conditions, as well as some questions about potential interventions in order to improve system performance in general and under future uncertain conditions. The survey responses were evaluated based on the Safe & SuRe resilience framework, assessing measures of mitigation, adaptation, coping and learning, and exploring organisational and operational responses of IWS utilities. Infrastructure capacity and water resources availability were identified as the main causes of intermittency in most water distribution systems, while intermittent electricity was considered as the main external cause. Participants indicated that some risk assessment process was in place; however, COVID-19 has surpassed any provisions made to address the risks. Lessons learnt highlighted the importance of financial resources, e-infrastructure for efficient system operation and communication with consumers, and the critical role of international knowledge transfer and the sharing of best practice guidelines for improving resilience and transitioning towards continuous water supply.


Author(s):  
Sornsiri Sriboonnak ◽  
Phacharapol Induvesa ◽  
Suraphong Wattanachira ◽  
Pharkphum Rakruam ◽  
Adisak Siyasukh ◽  
...  

The formation of trihalomethanes (THMs) in natural and treated water from water supply systems is an urgent research area due to the carcinogenic risk they pose. Seasonal effects and pH have captured interest as potential factors affecting THM formation in the water supply and distribution systems. We investigated THM occurrence in the water supply chain, including raw and treated water from water treatment plants (coagulation, sedimentation, sand filtration, ClO2-disinfection processes, and distribution pipelines) in the Chiang Mai municipality, particularly the educational institute area. The effects of two seasons, rainy (September–November 2019) and dry (December 2019–February 2020), acted as surrogates for the water quality profile and THM occurrence. The results showed that humic acid was the main aromatic and organic compound in all the water samples. In the raw water sample, we found a correlation between surrogate organic compounds, including SUVA and dissolved organic carbon (DOC) (R2 = 0.9878). Four species of THMs were detected, including chloroform, bromodichloromethane, dibromochloromethane, and bromoform. Chloroform was the dominant species among the THMs. The highest concentration of total THMs was 189.52 μg/L. The concentration of THMs tended to increase after chlorination when chlorine dioxide and organic compounds reacted in water. The effect of pH on the formation of TTHMs was also indicated during the study. TTHM concentrations trended lower with a pH ≤ 7 than with a pH ≥ 8 during the sampling periods. Finally, in terms of health concerns, the concentration of TTHMs was considered safe for consumption because it was below the standard (<1.0) of WHO’s Guideline Values (GVs).


2022 ◽  
Vol 4 ◽  
pp. 100116
Author(s):  
B.K.A Bellanthudawa ◽  
N.M.S.K. Nawalage ◽  
S. Suvendran ◽  
A.T. Novak ◽  
H.M.A.K. Handapangoda ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1037 ◽  
Author(s):  
Ewa Ociepa ◽  
Maciej Mrowiec ◽  
Iwona Deska

This paper presents the analysis and assessment of water losses in water distribution systems of three water supply companies operating water supply networks in the area of effect of underground mining. The analysis of water losses was conducted based on numerous indices allowing for obtaining objective information on the condition of the water supply system. The method of the analysis of percentage water loss index was extended by the methods of determination of losses according to the International Water Association. The results of the analysis lead to the conclusion that with regular actions, the companies have reduced water losses in recent years to a level considered to be good compared to national data and average compared to international standards. The value of the failure intensity index for all companies in 2011 was over 1.0 while currently it is about 0.5. The decrease in Non-Revenue Water basic loss index (NRWB) from more than 20% for all analysed companies in 2008 to a few percent in 2017 and the decrease in Infrastructure Leakage Index (ILI) for companies A and C to less than 2.0 are evidence of the good condition of the network. This is also confirmed by the unit water loss index per capita, with its value in 2017 being 9.1 dm3/(inhabitant day) for company A, 11 dm3/(inhabitant·day) for B and 7.4 dm3/(inhabitant·day) for C. The several years of analysis and evaluation of numerous indices of water loss presented in the paper reveals the effectiveness of the adopted strategies of reducing leakages in the distribution system. It should be emphasized that the analysed companies have been involved in comprehensive initiatives aimed at reducing water leakages, resulting in a substantial reduction in water losses. GIS monitoring systems and databases are particularly helpful in reducing water losses. The basis of the activities is monitoring of flow and pressure in water supply networks and active leakage control. Network zoning with simultaneous observation of minimum night-time flows allows for preliminary location of the failure. Equipping companies with special leakage detection devices such as geophones, stethophones or correlators enables quick detection of leakages. The next step is to replace water meters with more and more accurate ones and to implement radio reading of water meters. All analysed companies perform systematic replacement of old steel and cast iron pipes which cause a large number of leakages that are often difficult to identify, thus leading to water losses.


2005 ◽  
Vol 5 (3-4) ◽  
pp. 137-143
Author(s):  
E. Shin ◽  
H. Park ◽  
T. Ryu ◽  
J. Kim ◽  
K.T. Yum

Since regional water supply systems (RWSS) in Korea are all separated and are tree-shaped networks, the reliability is low and operation is not efficient in an emergency. So connecting RWSS to each other can be a good option to improve the operation efficiency. This study has been initiated to evaluate efficiency looking at a pilot case. Expected shortage has been selected as a surrogate. In this study, we developed pipe failure probability equations which are suitable in Korea by considering material, diameter, year, and length. As a pilot case, the three systems of Jeon-ju (JJ), Bu-an (BA), and Seom-jin (SJ) are selected and we consider two connections: JJ–BA and JJ–SJ. In each connection we develop three alternative plans, and we conclude that connections of JJ–BA and JJ–SJ can improve the operational efficiency as much as 5% and 4%, respectively.


2013 ◽  
Vol 13 (4) ◽  
pp. 889-895 ◽  
Author(s):  
C. Lenzi ◽  
C. Bragalli ◽  
A. Bolognesi ◽  
S. Artina

The collection and distribution of drinking water resources generally require large quantities of energy, that vary according to factors related to the characteristics of the served area, as well as to design and management choices. Energy intensity indicators (energy per unit of volume) are insufficient to assess the weight of different factors that affect the energy consumption and appear not suitable for the comparison of different water supply systems. The key step of this work is to define a methodology for assessing the energy efficiency of water supply systems. In particular, water losses in water distribution systems, generally assessed in relation to the quantity of high quality water dispersed in the environment, are herein considered in relation to their energy content. In addition to the evaluation of energy balance using the approach proposed by Enrique Cabrera et al. in ‘Energy audit of water networks’ (see J. Water Res. Plan. Manage.136 (6), 669–677) an overall efficiency indicator WSEE (Water Supply Energy Efficiency) is then proposed. Its decomposition finally leads to the definition of further indicators, which may help to assess how the structure of the network, leakage rate and/or pumps affect the energy efficiency of the water system. Such indicators can be used to compare different water supply systems and to identify the impact of individual interventions. The proposed energy analysis was applied to two case studies in Northern Italy.


Sign in / Sign up

Export Citation Format

Share Document