scholarly journals Hope for the Best, Prepare for the Worst: Response of Tall Steel Buildings to the ShakeOut Scenario Earthquake

2011 ◽  
Vol 27 (2) ◽  
pp. 375-398 ◽  
Author(s):  
Matthew Muto ◽  
Swaminathan Krishnan

This work represents an effort to develop one plausible realization of the effects of the scenario event on tall steel moment-frame buildings. We have used the simulated ground motions with three-dimensional nonlinear finite element models of three buildings in the 20-story class to simulate structural responses at 784 analysis sites spaced at approximately 4 km throughout the San Fernando Valley, the San Gabriel Valley, and the Los Angeles Basin. Based on the simulation results and available information on the number and distribution of steel buildings, the recommended damage scenario for the ShakeOut drill was 5% of the estimated 150 steel moment-frame structures in the 10–30 story range collapsing, 10% red-tagged, 15% with damage serious enough to cause loss of life, and 20% with visible damage requiring building closure.

2006 ◽  
Vol 22 (4) ◽  
pp. 1035-1061 ◽  
Author(s):  
Swaminathan Krishnan ◽  
Chen Ji ◽  
Dimitri Komatitsch ◽  
Jeroen Tromp

Using state-of-the-art computational tools in seismology and structural engineering, validated using data from the Mw=6.7 January 1994 Northridge earthquake, we determine the damage to two 18-story steel moment-frame buildings, one existing and one new, located in southern California due to ground motions from two hypothetical magnitude 7.9 earthquakes on the San Andreas Fault. The new building has the same configuration as the existing building but has been redesigned to current building code standards. Two cases are considered: rupture initiating at Parkfield and propagating from north to south, and rupture propagating from south to north and terminating at Parkfield. Severe damage occurs in these buildings at many locations in the region in the north-to-south rupture scenario. Peak velocities of 1 m.s−1 and 2 m.s−1 occur in the Los Angeles Basin and San Fernando Valley, respectively, while the corresponding peak displacements are about 1 m and 2 m, respectively. Peak interstory drifts in the two buildings exceed 0.10 and 0.06 in many areas of the San Fernando Valley and the Los Angeles Basin, respectively. The redesigned building performs significantly better than the existing building; however, its improved design based on the 1997 Uniform Building Code is still not adequate to prevent serious damage. The results from the south-to-north scenario are not as alarming, although damage is serious enough to cause significant business interruption and compromise life safety.


2006 ◽  
Vol 22 (4) ◽  
pp. 1081-1101 ◽  
Author(s):  
Bruce F. Maison ◽  
Kazuhiko Kasai ◽  
Yoji Ooki

Seismic behaviors of a five-story welded steel moment-frame (WSMF) office building in Kobe, Japan, and a six-story WSMF office building in Northridge, California, are compared. Both experienced earthquake damage (1995 Kobe and 1994 Northridge earthquakes, respectively). Computer models of the buildings are formulated, having the ability to simulate damage in terms of fractured moment connections. Analyses are conducted to assess building response during the earthquakes. The calibrated models are then analyzed using a suite of earthquake records to compare building performance under consistent demands. The Kobe building is found to be more rugged than the Northridge building. Analysis suggests it would experience much less damage than the Northridge building from shaking equivalent to 2,500-year earthquake for a generic Los Angeles site. Superior performance of the Kobe building is attributed to its relatively greater stiffness and strength. The results provide insight into the difference in seismic fragility expected for this class of mid-rise WSMF buildings in Japan and the United States.


2003 ◽  
Vol 19 (2) ◽  
pp. 237-254 ◽  
Author(s):  
Stephen A. Mahin ◽  
James O. Malley ◽  
Ronald O. Hamburger ◽  
Michael Mahoney

Considerable research has been conducted worldwide to assess the unexpected damage to welded steel moment-frame buildings during the 1989 Loma Prieta, 1994 Northridge, and 1995 Hyogo-ken Nanbu earthquakes, as well as to find effective and economical remedies that can be incorporated into analysis, design, and construction practices. A major six-year program has been undertaken with the sponsorship of the U.S. Federal Emergency Management Agency (FEMA) to synthesize and interpret the results of this research, and to conduct additional investigations to develop reliable, practical, and cost-effective guidelines for the design and construction of new steel moment-frame structures, as well as for the inspection, evaluation and repair or upgrading of existing ones. Topics investigated as part of this program include (1) performance of steel buildings in past earthquakes; (2) material properties and fracture issues; (3) joining and inspection; (4) connection performance; (5) system performance; (6) performance prediction and evaluation; and (7) social, economic, and political impacts. The project utilizes a performance-based engineering framework and addresses issues pertaining to various types of steel moment-resisting frames including those utilizing welded, bolted, and partially restrained connections. The guidelines are applicable to regions of low, medium, and high seismicity throughout the United States. This paper reviews the overall organization and management of this program of research, guideline development, training and peer evaluation, the scope of the investigations undertaken, and the general organization and contents of the guidelines developed.


2012 ◽  
Vol 446-449 ◽  
pp. 3495-3498
Author(s):  
Wei Wang ◽  
Chang Hao Zhang ◽  
Guan Feng Wang ◽  
Juan Zhang

The welding joint method is usually applied in the reinforcing process of the steel moment frame connections. The welding parameters are chosen and discussed and the finite element analysis is employed to analyze the completely penetration joint weld between the flange plates and the column flange. The three-dimensional thermo-structure simulation is conducted. Furthermore, the influence of the residual stresses on the the loading capacity of the reinforced connection is discussed. The temperature field during the welding process and the residual stresses distribution are given. The existence of the welding residual will highly increase the likelihood of brittle fracture of the steel in the heat affect zone.


2003 ◽  
Vol 19 (2) ◽  
pp. 365-384 ◽  
Author(s):  
Charles A. Kircher

This paper describes procedures that may be used by experienced structural engineers to develop earthquake damage and related loss functions for welded steel moment-frame (WSMF) buildings. The damage and loss functions are based on and compatible with the loss estimation methods of HAZUS, a technology developed by Federal Emergency Management Agency (FEMA) for assessing regional impacts of earthquakes. The loss estimation procedures were developed by the SAC Steel Program as described in SAC Joint Venture Topical Report SAC/BD-99/13. These procedures form the basis for Appendix B of FEMA-351, Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. The procedures for developing damage and loss functions for WSMF building response are general in nature and applicable to WSMF buildings designed to different seismic criteria and having different connection details. Default values of damage and loss function parameters are provided for typical 3-story, 9-story, and 20-story WSMF buildings, designed for Los Angeles, Seattle, or Boston seismic criteria and having pre-Northridge, post-Northridge, or damaged pre-Northridge connection conditions.


2016 ◽  
Vol 7 (4) ◽  
pp. 286-305 ◽  
Author(s):  
Ha Nguyen ◽  
Ann E. Jeffers ◽  
Venkatesh Kodur

Purpose This paper aims to address a need for improving the structural resilience to multi-hazard threats including fire and progressive collapse caused by the loss of a column. Design/methodology/approach The focus is on a steel moment frame that uses welded-unreinforced flange-bolted web connections between the beams and columns. A three-dimensional finite element (FE) model was created in ABAQUS with temperature-dependent properties for steel based on the Eurocode. The model was validated against experimental data at ambient and elevated temperature. Findings The failure mechanisms in the FE model were consistent with experimental observations. Two scenarios were considered: fixed load with increasing temperature (i.e. simulating column failure prior to fire) and fixed temperature with increasing load (i.e. simulating column failure during fire). Originality/value A macro element (or component-based) model was also introduced and validated against the FE model and the experimental data, offering the possibility of analyzing large-scale structural systems with reasonable accuracy and improved computational efficiency.


2000 ◽  
Vol 16 (1) ◽  
pp. 179-203
Author(s):  
James O. Malley ◽  
Charles J. Carter ◽  
C. Mark Saunders

One of the important surprises of the Northridge earthquake of January 17, 1994, was the widespread and unanticipated brittle fracture of welded steel beam-to-column connections. Although no casualties or collapses occurred during the Northridge earthquake as a result of these connection failures, and many WSMF buildings were not damaged at all, a wide spectrum of brittle connection damage did occur, ranging from minor cracking to completely severed columns. This paper summarizes two of the most important documents that have been developed in response to the damage suffered to steel moment frame buildings in the Northridge earthquake. The first, FEMA 267, Interim Guidelines: Evaluation, Repair, Modification and Design of Welded Steel Moment Frame Structures, was generated from studies undertaken as part of a project initiated by the U.S. Federal Emergency Management Agency (FEMA) to reduce the earthquake hazards posed by steel moment-resisting frame buildings. The second document addressed in this paper is the 1997 edition of the American Institute of Steel Construction (AISC) Seismic Provisions for Structural Steel Buildings (commonly referred to as the AISC Seismic Provisions) that incorporates the new information generated by the FEMA-sponsored project and other investigations on the seismic performance of steel structures, and has been adopted by reference into the 2000 International Building Code (IBC).


1992 ◽  
Vol 82 (1) ◽  
pp. 81-103 ◽  
Author(s):  
Robert W. Graves ◽  
Robert W. Clayton

Abstract Path effects for seismic wave propagation within three-dimensional (3-D) basin structures are analyzed using a reciprocal source experiment. In this experiment, a numerical simulation is performed in which a point source is excited at a given location and then the wave field is propagated and recorded throughout a 3-D grid of points. Using the principle of reciprocity, source and receiver locations are reversed. This allows the modeling of path effects into a particular observation site for all possible source locations using only one simulation. The numerical technique is based on the use of paraxial extrapolators and currently tracks only acoustic waves. However, the method is capable of handling arbitrary media variations; thus, effects due to focusing, diffraction, and the generation of multiple reflections and refractions are modeled quite well. The application of this technique to model path effects for local earthquakes recorded at stations in the Los Angeles area of southern California indicates the strong influence of the 3-D crustal basins of this region on the propagation of seismic energy. The modeling results show that the Los Angeles, San Fernando, and San Gabriel basins create strong patterns of focusing and defocusing for paths into these stations from various source locations. These simulations correlate well with earthquake data recorded at both stations. By comparing these calculations with earthquake data, we can begin to evaluate the importance of these basin effects on observed patterns of strong ground motions.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


Sign in / Sign up

Export Citation Format

Share Document