Tumor mutational burden (TMB) and co-existing actionable mutations in biliary tract cancers (BTC).

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 4086-4086 ◽  
Author(s):  
Apurva Jain ◽  
Rachna T. Shroff ◽  
Mingxin Zuo ◽  
Jacqueline Weatherly ◽  
Funda Meric-Bernstam ◽  
...  

4086 Background: Mutations in DNA repair pathway were identified in 13% of Biliary Tract Cancers (BTC) [ Cancer2016;122:3838–3847]. High TMB tumors including melanoma, lung cancer and those with microsatellite instability (MSI-H) are associated with susceptibility to immune blockade using checkpoint inhibitors. TMB data in BTC is limited and its association with actionable somatic mutation (mut) profiles in BTC is unknown. Methods: Comprehensive genomic profiling (CGP) of 309 FFPE tissue blocks of BTC pts with a hybrid capture of all coding exons of 236 cancer-related genes and 47 introns of 19 genes rearranged in cancer was done using FoundationOne. Base substitutions, indels, gene fusion/rearrangements, TMB, and MSI status were assessed. TMB was calculated by counting mutations across a 1.25Mb region and classified into high (TMBH; ≥20 mut/Mb), intermediate (TMBI; 6 - 19mut/Mb) and low (TMBL; < 6mut/Mb). MSI high (MSIH) and Stable (MSS) status was assigned by a computational algorithm examining 114 intronic homopolymer loci. Patients with TMB ≥6 mut/Mb (N = 60) were included in the clinical correlative portion of this study. Results: Sixty patients with TMB ≥6 mut were identified out of 309 pts of which 9 (15%) were TMBH and 51 (85%) were TMBI. These included 3 (5%) MSIH and 18 (30 %) MSS. The median age was 59 years (range: 29-86), 35 (58%) were females, majority were intrahepatic cholangiocarcinoma (n = 31; 52%) and 28 (47%) presented with advanced disease at diagnosis. Twenty three (38%) pts had received radiation therapy, 28 (47%) surgery and 3 (5%) received immunotherapy. Most frequent co-existing mut seen was TP53 (N = 35; 58%). APC mut was seen in 7 (12%) pts. DNA repair pathway muts ( MSH6, BRCA1, BRCA2, ATM, MLH1, or MSH2 genes) were identified in 78% of TMBH versus 16% in TMBI cases (p < 0.0001). Frequency of PIK3CA mut differed significantly between TMBH and TMBI (44% vs 10%, p < 0.0001). Pts with TMBI had a significantly better median OS (110 weeks) as compared to TMBH (43 weeks) (p = 0.003). Conclusions: DNA repair pathway and PIK3CA mut maybe associated with TMBH in BTC. A better understanding of TMB and associated actionable mutations in BTC may be of value for the management of BTC patients with targeted agents and immunotherapy.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. TPS5597-TPS5597
Author(s):  
John Paul Diaz ◽  
Wenrui Duan ◽  
Eric Schroeder ◽  
Zuanel Diaz ◽  
Nicholas Lambrou ◽  
...  

TPS5597 Background: Immunotherapy has improved outcomes for patients with recurrent or metastatic cervical cancer whose tumors express PD-L1. Pembrolizumab (PEM), a monoclonal antibody that binds to programmed cell death 1 (PD 1) receptor, inhibits interaction with programmed cell death ligand 1 (PD-L1) and programmed cell death ligand 2 (PD-L2). It is approved for the treatment of recurrent or metastatic cervical cancer. Despite promising results, new strategies are being developed to improve immunotherapy responses. This includes DNA-damaging agents that have the potential to enhance the response to immunotherapy by promoting neo-antigen release, increasing tumor mutational burden, and enhancing PD-L1 expression. Poly-ADP-ribose polymerase (PARP) inhibitors, such as olaparib, have shown synergy with immunotherapy in preclinical and early clinical studies. PARP-based therapy is based on the inhibition of single-strand DNA repair, leading to DNA damage and increased tumor mutational burden. As a result, the tumor becomes a more attractive target for immunotherapy. Based on this, we are investigating the interplay between homologous recombination (HR) repair deficiency, another mechanism of DNA repair, and solid tumor response to ICI. Our approach uses an all-inclusive functional immunofluorescence assay of the Fanconi Anemia triple-staining immunofluorescence (FATSI) we developed and can be performed in paraffin-embedded tumors. Methods: This is a phase II open-label single center trial evaluating the role of PEM and olaparib in patients with metastatic cervical cancer who have progressed on first-line standard of care chemotherapy. FATSI will be performed in all patients. We hypothesize that FATSI negative tumors will be associated with improved responses. Other eligibility criteria include measurable disease by imaging, 18 years of age or older, and no previous exposure to ICI or PARP inhibitor. The primary objective is to evaluate the immune-related objective response rate (iORR) achieved in patients with FA Repair Pathway functionally competent and functionally deficient tumors. Secondary objectives include 20-week progression free survival and overall survival. Other exploratory objectives include evaluation of the mutation load and markers of neo-antigenicity, T cell receptor clonotype analyses (before and after treatment), and alterations in HR repair genes. We will utilize a two-stage phase II design to detect an iORR ≥ 20% in the whole population tested vs. the null hypothesis that the true iORR ≤5%, represents a response by chance alone or other infrequent unknown mechanisms. An interim analysis requires at least 2 of the first 20 evaluable patients enrolled have an objective response. If this occurs, we will accrue 28 additional patients to total 48. Enrollment is ongoing and two patients are currently on treatment. Clinical trial information: NCT04483544.


2018 ◽  
Vol 36 (4_suppl) ◽  
pp. 43-43
Author(s):  
Aparna Raj Parikh ◽  
Yuting He ◽  
Theodore S. Hong ◽  
Ryan Bruce Corcoran ◽  
Jeffrey W. Clark ◽  
...  

43 Background: The DDR pathway is important in tumor biology, allowing cancer cells a mechanism to resist damage by chemotherapy and radiotherapy. BRCA1/2 are the most well described genes in the pathway, but several others ( ATM, ATR, PALB2, etc.) are involved with DDR and are mutated in many cancers. Tumors with a DDR defect are susceptible to PARP inhibition (PARPi) in some cases, but also potentially to immune checkpoint inhibitors (ICPIs), given immunomodulatory effects of PARPi and the hypermutated phenotype commonly associated with these genomic alterations (GA). We looked at the prevalence of select DDR defects in tubular GI cancers and the correlation between DDR and TMB. Methods: We prospectively analyzed samples from 17,486 unique patients with advanced colorectal (CRC), esophageal, gastric, or small bowel carcinomas using hybrid-capture based comprehensive genomic profiling. TMB (mutations/Mb) was calculated from 1.11 Mb of sequenced DNA. We looked at GA in 8 genes- ARID1A, ATM, ATR, BRCA1, BRCA2, CDK12, PALB2, RAD51 across these tumors types. Results: DDR GA were found in 16% of cases: gastric 464/1,750 (27%), small bowel 141/666 (21%), esophageal 441/2,501 (18%), and CRC 1,824/12,569 (15%). ARID1A (9.0%) and ATM (5%) were the most commonly altered DDR genes in this series, followed by BRCA2 (2.3%), BRCA1 (1.1%), ATR (0.8%), CDK12 (0.7%), PALB2 (0.6%), and RAD51 (0.1%), with 24% (675/2,870) of DDR-altered cases having GA in more than one DDR gene. Among DDR-altered cases, 21% had high TMB (≥20 mut/Mb) compared to just 1.4% high TMB in DDR-wild-type cases (p < 0.001). Microsatellite instability (MSI) status was available for a subset of cases and 19% (419/2,154) of those with a DDR GA were MSI high. CDK12 and ATR altered cases had the highest proportion of high TMB: CDK12 (55%, median TMB 31.5 mut/Mb) and ATR (55%, median TMB 35.1 mut/Mb), followed by cases with GA in BRCA2 (40%), BRCA1 (28%), ARID1A (27%), ATM (22%), and RAD51 (20%). Conclusions: DDR defects are relatively common across tubular GI tumor types and are associated with a hypermutated phenotype in over 20% of cases. This may be important to identify likely responders to both PARPi and ICPIs.


2020 ◽  
pp. 665-679
Author(s):  
Ying L. Liu ◽  
Pier Selenica ◽  
Qin Zhou ◽  
Alexia Iasonos ◽  
Margaret Callahan ◽  
...  

PURPOSE Homologous DNA repair–deficient (HRD) ovarian cancers (OCs), including those with BRCA1/2 mutations, have higher levels of genetic instability, potentially resulting in higher immunogenicity, and have been suggested to respond better to immune checkpoint inhibitors (ICIs) than homologous DNA repair–proficient OCs. However, clinical evidence is lacking. The study aimed to evaluate the associations between BRCA1/2 mutations, HRD, and other genomic parameters and response to ICIs and survival in OC. METHODS This is a single-institution retrospective analysis of women with recurrent OC treated with ICIs. BRCA1/2 mutation status and clinicopathologic variables were abstracted from the medical records. Targeted and whole-exome sequencing data available for a subset of patients were used to assess tumor mutational burden (TMB), HRD, and fraction of genome altered (FGA). ICI response was defined as lack of disease progression for ≥ 24 weeks. Associations of BRCA1/2 status and genomic alterations with progression-free survival (PFS) and overall survival (OS) were determined using Cox proportional hazards models. RESULTS Of the 143 women treated with ICIs, 134 had known BRCA1/2 mutation status. Deleterious germline or somatic BRCA1/2 mutations were present in 31 women (24%). There was no association between presence of BRCA1/2 mutations and response ( P = .796) or survival. Genomic analysis in 73 women found no association between TMB ( P = .344) or HRD ( P = .222) and response, PFS, or OS. There were also no significant differences in somatic genetic alterations between responders and nonresponders. High FGA was associated with an improvement in PFS ( P = .014) and OS ( P = .01). CONCLUSION TMB, BRCA1/2 mutations, and HRD are not associated with response or survival, cautioning against their use as selection criteria for ICI in recurrent OC. FGA should be investigated further as a biomarker of response to immunotherapy in OC.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 9116-9116
Author(s):  
Stephen L. Graziano ◽  
Dean C. Pavlick ◽  
Ethan Sokol ◽  
Shakti H. Ramkissoon ◽  
Eric Allan Severson ◽  
...  

9116 Background: NSCLC remains a major cause of cancer-associated mortality despite major advancements in treatments. In addition to immune checkpoint inhibitors (ICPI), new strategies for clinically advanced NSCLC now include the development of new synthetic lethality targets focused on protein arginine methyl transferases such as PRMT5 that exploit the impact of tumor cell genomic loss of MTAP. Methods: 29,379 advanced/metastatic NSCLC cases underwent hybrid-capture based comprehensive genomic profiling to evaluate all classes of genomic alterations (GA). Tumor mutational burden (TMB) was determined on up to 1.1 Mb of sequenced DNA and microsatellite instability (MSI) was determined on up to 114 loci. PD-L1 tumor cell expression was determined by DAKO 22C3 immunohistochemistry (IHC); low positive was a tumor proportion score (TPS) 1-49% and high positive was a TPS ≥50%. Results: 3,928 NSCLC exhibited MTAP homozygous loss. Cases had the following subtypes: adenocarcinoma (59%), squamous cell ca (22%), NSCLC NOS (16%), and large cell neuroendocrine, sarcomatoid, adenosquamous ca (all 1%). GA/tumor were similar when CDKN2A/B losses associated with 9p21 co-deletion with MTAP loss are excluded. Significant differences in currently targetable GA included KRAS G12C higher in MTAP-intact NSCLC (P =.0003) and EGFR short variant mutations higher in MTAP-deleted NSCLC (P <.0001). MTAP-intact NSCLC had higher frequencies of GAs in TP53 (P <.0001) and RB1 and a lower frequency of SMARCA4 (P <.0001). GAs frequencies in ERBB2, MET, ALK, ROS1 and NTRK1 were similar. Biomarkers for potential ICPI efficacy were higher in MTAP-intact including TMB ≥10mut/Mb (P =.0002) and low and high PD-L1 IHC staining (P =.01). Biomarkers potentially predictive of ICPI resistance ( STK11 and KEAP1) were similar in both groups. Conclusions: MTAP loss occurs in 13% of NSCLC, supporting the development of novel targeted therapies designed to exploit PRMT5 hyper-dependence in these tumors. MTAP loss in NSCLC is accompanied by differences in targeted and ICPI options for these patients which may impact future combination strategies. Further study of anti-PRMT5 drugs that are enabled by MTAP loss in NSCLC appears warranted.[Table: see text]


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 666 ◽  
Author(s):  
Evangelos Koustas ◽  
Panagiotis Sarantis ◽  
Athanasios G. Papavassiliou ◽  
Michalis V. Karamouzis

The emergence of cancer immunotherapy has already shown some remarkable results, having changed the treatment strategy in clinical practice for solid tumors. Despite these promising long-term responses, patients seem to lack the ability to respond to immune checkpoint inhibitors, thus demonstrating a primary resistance to immunotherapy. Moreover, a significant number of patients who initially respond to treatment eventually acquire resistance to immunotherapy. Both resistance mechanisms are a result of a complex interaction among different molecules, pathways, and cellular processes. Several resistance mechanisms, such as tumor microenvironment modification, autophagy, genetic and epigenetic alterations, tumor mutational burden, neo-antigens, and modulation of gut microbiota have already been identified, while more continue to be uncovered. In this review, we discuss the latest milestones in the field of immunotherapy, resistance mechanisms against this type of therapy as well as putative therapeutic strategies to overcome resistance in solid tumors.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3625
Author(s):  
Boris Duchemann ◽  
Jordi Remon ◽  
Marie Naigeon ◽  
Laura Mezquita ◽  
Roberto Ferrara ◽  
...  

Immune checkpoint inhibitors are now a cornerstone of treatment for non-small cell lung cancer (NSCLC). Tissue-based assays, such as Programmed cell death protein 1 (PD-L1) expression or mismatch repair deficiency/microsatellite instability (MMRD/MSI) status, are approved as treatment drivers in various settings, and represent the main field of research in biomarkers for immunotherapy. Nonetheless, responses have been observed in patients with negative PD-L1 or low tumor mutational burden. Some aspects of biomarker use remain poorly understood and sub-optimal, in particular tumoral heterogeneity, time-evolving sampling, and the ability to detect patients who are unlikely to respond. Moreover, tumor biopsies offer little insight into the host’s immune status. Circulating biomarkers offer an alternative non-invasive solution to address these pitfalls. Here, we summarize current knowledge on circulating biomarkers while using liquid biopsies in patients with lung cancer who receive treatment with immune checkpoint inhibitors, in terms of their potential as being predictive of outcome as well as their role in monitoring ongoing treatment. We address host biomarkers, notably circulating immune cells and soluble systemic immune and inflammatory markers, and also review tumor markers, including blood-based tumor mutational burden, circulating tumor cells, and circulating tumor DNA. Technical requirements are discussed along with the current limitations that are associated with these promising biomarkers.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2974
Author(s):  
Andrea Sesma ◽  
Julián Pardo ◽  
Mara Cruellas ◽  
Eva M. Gálvez ◽  
Marta Gascón ◽  
...  

Despite therapeutic advances, lung cancer (LC) is one of the leading causes of cancer morbidity and mortality worldwide. Recently, the treatment of advanced LC has experienced important changes in survival benefit due to immune checkpoint inhibitors (ICIs). However, overall response rates (ORR) remain low in unselected patients and a large proportion of patients undergo disease progression in the first weeks of treatment. Therefore, there is a need of biomarkers to identify patients who will benefit from ICIs. The programmed cell death ligand 1 (PD-L1) expression has been the first biomarker developed. However, its use as a robust predictive biomarker has been limited due to the variability of techniques used, with different antibodies and thresholds. In this context, tumor mutational burden (TMB) has emerged as an additional powerful biomarker based on the observation of successful response to ICIs in solid tumors with high TMB. TMB can be defined as the total number of nonsynonymous mutations per DNA megabases being a mechanism generating neoantigens conditioning the tumor immunogenicity and response to ICIs. However, the latest data provide conflicting results regarding its role as a biomarker. Moreover, considering the results of the recent data, the use of peripheral blood T cell receptor (TCR) repertoire could be a new predictive biomarker. This review summarises recent findings describing the clinical utility of TMB and TCRβ (TCRB) and concludes that immune, neontigen, and checkpoint targeted variables are required in combination for accurately identifying patients who most likely will benefit of ICIs.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Fiona Turkes ◽  
Juliet Carmichael ◽  
David Cunningham ◽  
Naureen Starling

Biliary tract cancers (BTCs) are poor prognosis malignancies with limited treatment options. Capecitabine has recently emerged as an effective agent in the adjuvant setting; however, treatment of advanced disease is still limited to first-line cisplatin and gemcitabine chemotherapy. Recent global efforts in genomic profiling and molecular subtyping of BTCs have uncovered a wealth of genomic aberrations which may carry prognostic significance and/or predict response to treatment, and several targeted agents have shown promising results in clinical trials. As such, the uptake of comprehensive genomic profiling for patients with BTCs and the expansion of basket trials to include these patients are growing. This review describes the currently approved systemic therapies for BTCs and provides insight into the emerging targeted and immunotherapeutic agents, as well as conventional chemotherapeutic regimes, currently being investigated in clinical trials.


2008 ◽  
Vol 17 (8) ◽  
pp. 2123-2127 ◽  
Author(s):  
Mingdong Zhang ◽  
Wen-Yi Huang ◽  
Gabriella Andreotti ◽  
Yu-Tang Gao ◽  
Asif Rashid ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document