Development of DDPCR blood-based diagnostic tests that simultaneously measure mRNA expression from immune and cancer cells.

2017 ◽  
Vol 35 (7_suppl) ◽  
pp. 22-22
Author(s):  
Hestia S. Mellert ◽  
Leisa Jackson ◽  
Chris Tompkins ◽  
Anne Lodge ◽  
Gary Anthony Pestano

22 Background: Therapeutic options for patients with non-small cell lung cancer (NSCLC) continue to expand with the advent of immunotherapies. Lack of tissue and drawbacks with available IHC tests have increased the need for blood-based diagnostics. Thus, the detection of circulating nucleic acids has become highly relevant to clinical testing. Methods: We focused on extending the utility of blood-based testing for measurement of intra-cellular transcripts to multiplexed detection of gene expression. Specifically, we addressed maximizing the yield of quality circulating RNA for use in multiplexed droplet digital PCR (ddPCR) assays. Evaluation criteria included droplet counts for biomarkers of cancer and immunotherapy response. The markers evaluated were CD45, CD3, CK8, CK18, CK19, and PD-L1. Specimens included cell lines and prospectively collected samples from normal, healthy donors and donors with NSCLC. Results: Cell lines expressing variable levels of cytokeratins and PD-L1 were used to establish assay sensitivity. In these experiments, the test system could detect these markers in the equivalent of a single cell. We evaluated specificity using RNA from these same cell lines, resting and activated lymphocytes, and monocytes. With the exception of CK8, all assays demonstrated the expected specificities. Given the complexity of assessing PD-L1 in circulation because of its expression on immune cells, a threshold of 30 copies of PD-L1 was established using normal healthy donors (n = 9). Using this cut-off we then measured PD-L1 in circulating RNA from donors with NSCLC (n = 20). By these criteria, PD-L1 expression of sufficient copy number was restricted to a single EGFR wild-type donor (1/10). Previous reports have indicated that for EGFR wild-type patients, PD-L1 over expression may be considered a poor prognostic indicator of OS. Conclusions: We are developing sensitive and specific methods that can be applied to gene expression studies in blood. We have shown feasibility of these methods by evaluating key immune and cancer-specific RNAs. Evaluations are on-going with prospective sample collections to validate thresholds for this assay that may lead to its clinical utility.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Silvia R. Vitale ◽  
Jean A. Helmijr ◽  
Marjolein Gerritsen ◽  
Hicret Coban ◽  
Lisanne F. van Dessel ◽  
...  

Abstract Background Extracellular vesicles (EVs) are actively secreted by cells into body fluids and contain nucleic acids of the cells they originate from. The goal of this study was to detect circulating tumor-derived EVs (ctEVs) by mutant mRNA transcripts (EV-RNA) in plasma of patients with solid cancers and compare the occurrence of ctEVs with circulating tumor DNA (ctDNA) in cell-free DNA (cfDNA). Methods For this purpose, blood from 20 patients and 15 healthy blood donors (HBDs) was collected in different preservation tubes (EDTA, BCT, CellSave) and processed into plasma within 24 h from venipuncture. EVs were isolated with the ExoEasy protocol from this plasma and from conditioned medium of 6 cancer cell lines and characterized according to MISEV2018-guidelines. RNA from EVs was isolated with the ExoRNeasy protocol and evaluated for transcript expression levels of 96 genes by RT-qPCR and genotyped by digital PCR. Results Our workflow applied on cell lines revealed a high concordance between cellular mRNA and EV-RNA in expression levels as well as variant allele frequencies for PIK3CA, KRAS and BRAF. Plasma CD9-positive EV and GAPDH EV-RNA levels were significantly different between the preservation tubes. The workflow detected only ctEVs with mutant transcripts in plasma of patients with high amounts (> 20%) of circulating tumor DNA (ctDNA). Expression profiling showed that the EVs from patients resemble healthy donors more than tumor cell lines supporting that most EVs are derived from healthy tissue. Conclusions We provide a workflow for ctEV detection by spin column-based generic isolation of EVs and PCR-based measurement of gene expression and mutant transcripts in EV-RNA derived from cancer patients’ blood plasma. This workflow, however, detected tumor-specific mutations in blood less often in EV-RNA than in cfDNA.


2006 ◽  
Vol 39 (1) ◽  
Author(s):  
ÁNGELA D ARMENDÁRIZ ◽  
FELIPE OLIVARES ◽  
RODRIGO PULGAR ◽  
ALEX LOGUINOV ◽  
VERÓNICA CAMBIAZO ◽  
...  

2006 ◽  
Vol 2 ◽  
pp. S552-S552
Author(s):  
Boe-Hyun Kim ◽  
Jae-Il Kim ◽  
Eun-Kyoung Choi ◽  
Richard I. Carp ◽  
Yong-Sun Kim

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3526-3526
Author(s):  
Xavier Leleu ◽  
Lian Xu ◽  
Zachary R. Hunter ◽  
Sophia Adamia ◽  
Evdoxia Hatjiharissi ◽  
...  

Abstract Background. Several TNF family members (CD40L and BAFF/BLYS) have been implicated in Waldenstrom’s Macroglobulinemia (WM) cell growth and survival. More recently, abnormalities in the APRIL-TACI pathway have been demonstrated by us in WM cells (Hunter, ASH2006, #228). TRAFs (TNFR-associated factor) are a family of adaptor proteins that mediate signal transduction from multiple members of the TNF receptor superfamily. In particular, TRAFs facilitate pro-apoptotic signaling from the TACI receptor, and TRAF2 is of importance among the TRAF adapter proteins since this protein is required for TNF-alpha-mediated activation of SAPK/JNK MAPK known to be involved in drug-induced death of tumor B cells. We therefore examined the role of TRAF2 in WM growth and survival. Method. We investigated TRAF2, 3 and 5 gene expression in WM patient bone marrow (BM) CD19+ cells and cell lines (BCWM.1, WSU-WM) and compared their expression to BM CD19+ cells from healthy donors. Expression of human TRAF transcripts were determined using real time quantitative RT-PCR (qPCR) based on TaqMan fluorescence methodology. To evaluate the role of TRAF2, a knockdown model was prepared in BL2126 B-cells and BCWM.1 WM cells using electroporation, with resulted ≥50% knockdown efficiency using RT-PCR and immunoblotting. Results. We found that TRAF3 and 5 gene expression was higher in WM versus healthy donors, while TRAF2 expression was lower in 8/13 (60%) patients, using qPCR. TRAFs gene expression did not correlate with tumor burden or WM prognostic markers. We next sought to understand the biological sequelae of TRAF2 deficiency in BL2126 and BCWM.1 cells and found that TRAF2 knockdown induced increased survival at 72 hours in both cell lines. We next studied sequence analysis of 20 WM patients CD19+ BM cells to determine whether there was a TRAF2 genomic alteration, and found heterozygous early termination mutation in exon 5 in 1 (5%) patient. Conclusion. Our data demonstrate that TRAF2 is a commonly dysregulated TNF family adapter protein in patients with WM, with important consequences in WM cell growth and survival.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 113-113 ◽  
Author(s):  
Chad C. Bjorklund ◽  
Deborah J. Kuhn ◽  
Jairo A. Matthews ◽  
Michael Wang ◽  
Veerabhadran Baladandayuthapani ◽  
...  

Abstract Abstract 113 Background: Novel drugs such as the immunomodulatory agent lenalidomide have revolutionized the treatment of multiple myeloma, as evidenced by an increasing overall survival for patients with both newly-diagnosed, and relapsed and/or refractory disease. Despite these improvements, myeloma remains incurable, and is still characterized by a trend for increasing chemoresistance at relapse, with a decreasing duration of benefit from each successive line of therapy. By understanding the mechanisms responsible for the emergence of drug resistance, which have so far not been well characterized in the case of lenalidomide, it may be possible to rationally design novel regimens that could either overcome this resistance, or possibly prevent its emergence altogether. Methods: To improve our understanding of the mechanisms responsible for lenalidomide resistance, we developed cell line models of interleukin (IL)-6-dependent (ANBL-6 and KAS-6/1) and –independent (U266 and MM1.S) lenalidomide-resistant multiple myeloma cells. Starting at a concentration that was 1/10 of the IC50 for lenalidomide's anti-proliferative effects in drug-naïve cells, increasing drug concentrations were used until all the cell lines could proliferate and maintain cell membrane integrity in the presence of 10 μM lenalidomide. These cell lines were then used as an in vitro model of lenalidomide-specific drug resistance, and subjected to further characterization, including with gene expression profiling. Results: Resistance to lenalidomide was evidenced by a dramatic, 100-1000-fold increase in the IC50 values of these myeloma cells. In the case of ANBL-6 cells, for example, drug-naïve cells showed an IC50 of 0.14 μM using tetrazolium dye-based viability assays, but this increased to >100 μM in the drug-resistant cells, as was the case in U266 and MM1.S cells. This resistance was a stable phenotype, since removal of lenalidomide for seven to ninety days from cell culture conditions did not re-sensitize them when 10 μM lenalidomide was reintroduced. Gene expression profiling followed by pathway analysis to examine changes at the transcript level between wild-type parental and lenalidomide-resistant cell lines identified the Wnt/β-catenin pathway as the most altered across all cell lines. Increased expression was seen in several members of the low-density-lipoprotein receptor related protein family, including LRP1 and 5; members of the wingless-type MMTV integrations site family, including WNT3 and 4; β-catenin; and downstream Wnt/β-catenin targets such as CD44. Similar changes were detected in primary samples from a patient who developed clinically lenalidomide-refractory disease. Reporter assays revealed an up to 5-fold increase in LEF/TCF-dependent transcription both in drug-naïve cells acutely exposed to lenalidomide, and in their chronically exposed, lenalidomide-resistant clones. Western blotting and flow cytometry confirmed that these lenalidomide-resistant cells had increased expression by 2-20 fold of β-catenin and CD44, as well as other LEF/TCF targets, including Cyclin D1 and c-Myc. Comparable changes occurred after lenalidomide exposure in myeloma cells grown in the context of bone marrow stroma. Notably, lenalidomide-resistant cells showed decreased expression of casein kinase 1 and increased phosphorylation of glycogen synthase kinase 3 at Ser21/9, both of which would reduce the phosphorylation of β-catenin needed for its later proteasome-mediated degradation. Stimulation of the Wnt/β-catenin pathway with recombinant human Wnt3a resulted in resistance to lenalidomide in wild-type, drug-naïve cells, as evidenced by a 10-fold increase in the IC50. Conversely, exposure of lenalidomide-resistant cell lines to quercetin, a known antagonist of the β-catenin/TCF interaction, induced a partial re-sensitization to lenalidomide. Conclusions: These data support the hypothesis that activation of the Wnt/β-catenin pathway represents a mechanism of both acute and chronic resistance to the anti-proliferative effects of lenalidomide in multiple myeloma. Moreover, they support the development of strategies aimed at suppressing Wnt/β-catenin activity to resensitize multiple myeloma to the effects of this immunomodulatory agent in vivo. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 611-611 ◽  
Author(s):  
Teresa Ezponda ◽  
Relja Popovic ◽  
Yupeng Zheng ◽  
Behnam Nabet ◽  
Christine Will ◽  
...  

Abstract Genetic alterations of epigenetic regulators have become a recurrent theme in hematological malignancies. In particular, aberrations that alter the levels or distribution of methylation of lysine 27 on histone H3 (H3K27me) have emerged as a common feature of a wide variety of cancers, including multiple myeloma (MM). The histone demethylase UTX/KDM6A activates gene expression by removing the H3K27me3 repressive histone mark, counteracting the activity of EZH2, the enzyme that places this modification. UTX somatic inactivating mutations and deletions are found in up to 10% of MM cases; nevertheless, the epigenetic impact of UTX loss in MM and the mechanisms by which it contributes to this disease remain to be elucidated. To ascertain the biological impact of UTX loss, we used a recently identified isogenic cell line pair: ARP-1 (UTX wild-type) and ARD (UTX null). UTX-null ARD cells were engineered to express UTX in a doxycycline-inducible manner. UTX add-back slowed the proliferation rate of ARD cells, without affecting their viability. Soft agar assays demonstrated that UTX-null ARD cells have increased clonogenicity compared to UTX-wild-type ARP-1 cells. Re-expression of UTX partially reversed this effect, decreasing the number and size of colonies formed. ARD cells also showed increased adhesion to Hs-5 bone marrow stromal cells and to fibronectin than ARP-1 cells, an ability associated with cell survival and drug resistance. UTX add-back decreased the adhesive properties of ARD cells demonstrating this effect is dependent on UTX loss. Mass spectrometry analysis of the add-back system and a panel of UTX wild-type and mutant MM cell lines showed that global levels of H3K27me are not altered after UTX loss or upon its add-back. Therefore, UTX depletion may alter H3K27me at specific loci, and control the expression of a limited number of genes. To identify the genes and pathways that are altered upon UTX loss, we performed RNA-sequencing (RNA-seq) on the paired MM cell lines and the add-back system. This analysis revealed approximately 5,000 genes differentially expressed between ARP-1 and ARD cells. Re-expression of UTX in the UTX-null ARD cells reversed the expression of approximately 1,400 genes, most of them being upregulated upon reintroduction of UTX. Gene ontology analysis of genes responsive to UTX manipulation identified pathways such as JAK-STAT, cadherin, integrin and Wnt pathways. Many of these pathways are related to cell adhesion properties, correlating with the effects observed in vitro. Some examples of the genes which expression was restored upon UTX add-back are E-cadherin, whose loss has been associated with MM progression; and PTPN6, a negative regulator of the JAK-STAT pathway. Chromatin immunoprecipitation (ChIP) experiments at UTX target genes revealed a decrease in H3K27me3 and a concomitant increase in H3K4me3 upon UTX add-back, correlating with the observed changes in gene expression. As loss of UTX leads to a failure in the removal of H3K27me3, we hypothesized that UTX-null cells may be more dependent on EZH2 to maintain high H3K27me3 levels at specific loci. Treatment of the paired cell lines with the EZH2 inhibitor GSK343 for 7 days significantly decreased the viability of UTX-null ARD cells, but had no effect on the UTX wild-type ARP-1 cells. This effect was not exclusive to these cell lines, as treatment of a panel of UTX wild-type and mutant MM cells corroborated the increased sensitivity in UTX-mutant cells. RNA-seq of ARD cells treated with GSK343 for 7 days identified approximately 2,000 genes with altered expression in response to this drug, most of them being upregulated upon EZH2 inhibition. These genes partially overlapped with the genes that were responsive to UTX add-back, including E-cadherin, suggesting that treatment with EZH2 inhibitors is somewhat similar to UTX add-back. Collectively, this work demonstrates that loss of UTX alters the epigenetic landscape of MM cells, leading to altered expression of a specific set of genes, ultimately benefiting cells through increased proliferation, clonogenicity and adhesion. Moreover, inhibition of EZH2 partially reverses aberrations promoted by UTX loss and may represent a rationale therapy for the treatment of this type of MM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 129-129 ◽  
Author(s):  
Fabrice Jardin ◽  
Anais Pujals ◽  
Laura Pelletier ◽  
Elodie Bohers ◽  
Vincent Camus ◽  
...  

Abstract Background and aim of the study Primary mediastinal B-cell lymphoma (PMBL) is an entity of aggressive B-cell lymphoma that is clinically and biologically distinct from the other molecular subtypes of diffuse large B-cell lymphoma (DLBCL). We recently detected by Whole exome sequencing a recurrent point mutation in the XPO1 (exportin 1) gene (also referred to as chromosome region maintenance 1; CRM1), which resulted in the Glu571Lys (p.E571K) missense substitution in 2 refractory/relapsed PMBL (Dubois et al., ICML 2015; Mareschal et al. AACR 2015). XPO1 is a member of the Karyopherin-b superfamily of nuclear transport proteins. XPO1 mediates the nuclear export of numerous RNAs and cellular regulatory proteins, including tumor suppressor proteins. This mutation is in the hydrophobic groove of XPO1 that binds to the leucine-rich nuclear export signal (NES) of cargo proteins. In this study, we investigated the prevalence, specificity, and biological / clinical relevance of XPO1 mutations in PMBL. Patients and methods High-throughput targeted or Sanger sequencing of 117 PMBL patients and 3 PMBL cell lines were performed. PMBL cases were defined either molecularly by gene expression profile (mPMBL cohort) or by standard histological method (hPMBL cohort) and enrolled in various LYSA (LYmphoma Study Association) clinical trials. To assess the frequency and specificity of XPO1 mutations, cases of classical Hodgkin lymphoma (cHL) and primary mediastinal grey zone lymphoma (MGZL) were analysed. Cell experiments were performed to assess the impact of the E571 mutation on the activity of selective inhibitor of nuclear export (SINE) molecules. Results XPO1 mutations were present in 28/117 (24%) PMBL cases but were rare in cHL cases (1/19, 5%) and absent from MGZL cases (0/20). A higher prevalence (50%) of the recurrent codon 571 variant (p.E571K) was observed in PMBL cases defined by gene expression profiling (n = 32), as compared to hPMBL cases (n = 85, 13%). No difference in age, International Prognostic Index (IPI) or bulky mass was observed between the PMBL patients harboring mutant and wild-type XPO1 in the overall cohort whereas a female predominance was noticed in the mPMBL cohort. Based on a median follow-up duration of 42 months, XPO1 mutant patients exhibited significantly decreased PFS (3y PFS = 74% [CI95% 55-100]) compared to wild-type patients (3y PFS = 94% [CI95% 83-100], p=0.049) in the mPMBL cohort. In 4/4 tested cases, the E571K variant was also detected in cell-free circulating plasmatic DNA, suggesting that the mutation can be used as a biomarker at the time of diagnosis and during follow-up. Importantly, the E571K variant was detected as a heterozygous mutation in MedB-1, a PMBL-derived cell line, whereas the two other PMBL cell lines tested, Karpas1106 and U-2940, did not display any variants in XPO1 exon 15. KPT-185, the SINE compound that blocks XPO1-dependent nuclear export, induced a dose-dependent decrease in cell proliferation and increased cell death in the PMBL cell lines harbouring wild type or mutated alleles. To test directly if XPO1 mutation from E571 to E571K alters XPO1 inhibition by SINE compounds, the mutated protein was tested in vitro. The E571XPO1 mutated allele was transiently transfected into osteosarcoma U2OS cells which stably express the fluorescently labelled XPO1 cargo REV. Cells were treated with the clinical SINE compound selinexor, which is currently in phase I/II clinical trials and nuclear localization of REV-GFP was analysed in red transfected cells. The results showed that the nuclear export of the mutated XPO1 protein was inhibited by selinexor similarly to the wild-type XPO1 protein (Figure 1). Conclusion Although the oncogenic properties of XPO1 mutations remain to be determined, their recurrent selection in PMBL strongly supports their involvement in the pathogenesis of this curable aggressive B-cell lymphoma. XPO1 mutations were primarily observed in young female patients who displayed a typical PMBL molecular signature. The E571K XPO1 mutation represents a novel hallmark of PMBL but does not seem to interfere with SINE activity. Rev-GFP (green fluorescent) expressing U2OS cells were transfected with wild type XPO1-RFP (red fluorescent protein), XPO1-C528S-RFP, XPO1-E571K-mCherry, and XPO1-E571G-mCherry. The cells were then treated with 1µM KPT-330 for 8 hours. Figure 1. Rev-GFP expressing U2OS cells transfected with XPO1 variants. Figure 1. Rev-GFP expressing U2OS cells transfected with XPO1 variants. Disclosures Landesman: Karyopharm Therapeutics: Employment. Senapedis:Karyopharm Therapeutics, Inc.: Employment, Patents & Royalties. Argueta:Karyopharm Therapeutics: Employment. Milpied:Celgene: Honoraria, Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2931-2931
Author(s):  
Xia Liu ◽  
Jiaji G Chen ◽  
Jie Chen ◽  
Lian Xu ◽  
Nicholas Tsakmaklis ◽  
...  

Abstract Hematopoietic cell kinase (HCK) is a member of the SRC family of tyrosine kinases (SFKs). HCK transcription is aberrantly upregulated in Waldenström's Macroglobulinemia (WM) and Activated B-cell (ABC) subtype Diffuse Large B-cell Lymphoma (DLBCL) in response to activating mutations in MYD88 (Yang et al, Blood 2016). To clarify the mechanism responsible for the aberrant upregulation of HCK transcription inMYD88 mutated cells, we analyzed the promoter sequence of HCK using PROMO and identified consensus binding sites for transcription factors (AP1, NF-kB, STAT3, and IRF1) that are regulated by mutated MYD88 (Ngo et al, Nature 2011; Treon et al, NEJM 2012; Yang et al, Blood 2013; Juilland et al, Blood 2016; Yang et al, Blood 2016). We performed Chromatin Immuno-precipitation (ChIP) assays using ChIP grade antibodies to JunB, c-Jun, NF-kB-p65, STAT3 and IRF1 in MYD88 mutated WM (BCWM.1, MWCL-1) and ABC DLBCL (TMD-8, HBL-1, OCI-Ly3) cells that highly express HCK transcripts, as well as wild type MYD88 expressing GCB DLBCL (OCI-Ly7, OCI-Ly19) cells that show low HCK transcription. Following ChIP, a HCK promoter specific quantitative PCR assay was used to detect HCK promoter sequences. These studies showed that JunB, NF-kB-p65 and STAT3 bound more robustly to the HCK promoter in MYD88 mutated WM and ABC-DLBCL cells versus MYD88 wild type GCB DLBCL cell lines, while c-Jun bound more abundantly to the HCK promoter sequence in all DLBCL cell lines, regardless of MYD88 mutation status. In contrast c-Jun binding was low in MYD88 mutated WM cells. IRF1 binding to the HCK promoter was similar in all cell lines, regardless of the MYD88 mutation status. To further investigate HCK regulation, we developed an HCK promoter driven luciferase reporter vector (WT) with mutated AP-1 binding (AP1-mu-1~6), NF-kB binding (NF-kB-mu-1~5), and STAT3 binding (STAT3-mu) sites and investigated their impact on HCK promoter activity in MYD88 mutated BCWM.1 cells. We observed that mutation of AP1-mu-1,4,5,6; NF-kB-mu-1,4,5, as well as STAT3-mu binding sites greatly reduced HCK promoter activity, thereby supporting a role for AP-1, NF-kB and STAT3 transcription factors in HCK gene expression in MYD88 mutated cells. To further clarify the importance of these transcription factors in aberrant HCK gene expression in MYD88 mutated cells, we treated BCWM.1, MWCL-1, TMD-8 and HBL-1 cells with the AP-1 inhibitor SR 11302; NF-kB inhibitor QNZ; and the STAT3 inhibitor STA-21. Treatment of cells for 2 hours with SR 11302, QNZ, and STA-21 at sub-EC50 concentrations resulted in decreased HCK expression in MYD88 mutated all cell lines. Lastly, we investigated the contribution of BCR signaling to HCK transcription. BCWM.1, MWCL-1, TMD-8, and HBL-1 cells were treated with the Syk kinase inhibitor R406, and HCK transcription levels were then assessed. Differences in HCK expression were observed between MYD88 mutated WM and ABC DLBCL cells following R406, supporting a contributing role for BCR signaling in ABC DLBCL but not WM cells to HCK expression. Our data provide critical new insights into HCK regulation, and a framework for targeting pro-survival HCK signaling in WM and ABC DLBCL cells dependent on activating MYD88 mutations. Disclosures Castillo: Biogen: Consultancy; Otsuka: Consultancy; Millennium: Research Funding; Janssen: Honoraria; Abbvie: Research Funding; Pharmacyclics: Honoraria. Treon:Janssen: Consultancy; Pharmacyclics: Consultancy, Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1470-1470
Author(s):  
Takaomi Sanda ◽  
Jeffrey W Tyner ◽  
Alejandro Gutierrez ◽  
Vu N Ngo ◽  
Jason M Glover ◽  
...  

Abstract Abstract 1470 To discover oncogenic pathways that are characteristically deregulated in T-cell acute lymphoblastic leukemia (T-ALL), we performed RNA interference screens both in T-ALL cell lines and primary specimens. We found that the JAK tyrosine kinase family member, TYK2, and its downstream effector, STAT1, are each required for the survival of T-ALL cells. To identify the effector molecules downstream of the TYK2-STAT1 pathway in T-ALL, we analyzed global gene expression profiles in TYK2-dependent T-ALL cell lines after silencing of TYK2 or STAT1. As expected, gene set enrichment analysis revealed that genes downregulated by TYK2 knockdown were generally also downregulated by knockdown of STAT1. Importantly, we found that expression of the anti-apoptotic gene BCL2 was significantly downregulated after silencing of both TYK2 and STAT1. Analysis by quantitative PCR of additional T-ALL cell lines revealed that silencing of TYK2 resulted in significant reductions of BCL2 mRNA expression in multiple TYK2-dependent cell lines. Expression of the wild-type but not the kinase-dead TYK2 protein was sufficient to rescue BCL2 protein expression and to prevent apoptosis after knockdown of endogenous TYK2, indicating that the tyrosine kinase activity of TYK2 is required for BCL2 upregulation. Similarly, expression of the shRNA-resistant wild-type STAT1A protein partially rescued BCL2 protein expression and prevented apoptosis, while a variant of STAT1A (Y701F) that is incapable of becoming phosphorylated on a requisite tyrosine residue did not rescue BCL2 levels. Taken together, our findings indicate that aberrant activation of a TYK2-STAT1 pathway upregulates BCL2 expression in T-ALL cells, and that the T-ALL cells develop pathway dependence, in that they require these sustained high levels BCL2 expression for survival. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 782-782
Author(s):  
Ayana Kon ◽  
Lee-Yung Shih ◽  
Masashi Minamino ◽  
Masashi Sanada ◽  
Yuichi Shiraishi ◽  
...  

Abstract Abstract 782 Recent genetic studies have revealed a number of novel gene mutations in myeloid malignancies, unmasking an unexpected role of deregulated histone modification and DNA methylation in both acute and chronic myeloid neoplasms. However, our knowledge about the spectrum of gene mutations in myeloid neoplasms is still incomplete. In the previous study, we analyzed 29 paired tumor-normal samples with chronic myeloid neoplasms with myelodysplastic features using whole exome sequencing (Yoshida et al., Nature 2011). Although the major discovery was frequent spliceosome mutations tightly associated with myelodysplasia phenotypes, hundreds of unreported gene mutations were also identified, among which we identified recurrent mutations involving STAG2, a core cohesin component, and also two other cohesin components, including STAG1 and PDS5B. Cohesin is a multimeric protein complex conserved across species and is composed of four core subunits, i.e., SMC1, SMC3, RAD21 and STAG proteins, together with several regulatory proteins. Forming a ring-like structure, cohesin is engaged in cohesion of sister chromatids in mitosis, post-replicative DNA repair and regulation of gene expression. To investigate a possible role of cohesin mutations in myeloid leukemogenesis, an additional 534 primary specimens of various myeloid neoplasms was examined for mutations in a total of 9 components of the cohesin and related complexes, using high-throughput sequencing. Copy number alterations in cohesin loci were also interrogated by SNP arrays. In total, 58 mutations and 19 deletions were confirmed by Sanger sequencing in 73 out of 563 primary myeloid neoplasms (13%). Mutations/deletions were found in a variety of myeloid neoplasms, including AML (22/131), CMML (15/86), MDS (26/205) and CML (8/65), with much lower mutation frequencies in MPN (2/76), largely in a mutually exclusive manner. In MDS, mutations were more frequent in RCMD and RAEB (19.5%) but rare in RA, RARS, RCMD-RS and 5q- syndrome (3.4%). Cohesin mutations were significantly associated with poor prognosis in CMML, but not in MDS cases. Cohesin mutations frequently coexisted with other common mutations in myeloid neoplasms, significantly associated with spliceosome mutations. Deep sequencing of these mutant alleles was performed in 19 cases with cohesin mutations. Majority of the cohesin mutations (16/19) existed in the major tumor populations, indicating their early origin during leukemogenesis. Next, we investigated a possible impact of mutations on cohesin functions, where 17 myeloid leukemia cell lines with or without cohesin mutations were examined for expression of each cohesin component and their chromatin-bound fractions. Interestingly, the chromatin-bound fraction of one or more components of cohesin was substantially reduced in cell lines having mutated or defective cohesin components, suggesting substantial loss of cohesin-bound sites on chromatin. Finally, we examined the effect of forced expression of wild-type cohesin on cell proliferation of cohesin-defective cells. Introduction of the wild-type RAD21 and STAG2 suppressed the cell growth of RAD21- (Kasumi-1 and MOLM13) and STAG2-defective (MOLM13) cell lines, respectively, supporting a leukemogenic role of compromised cohesin functions. Less frequent mutations of cohesin components have been described in other cancers, where impaired cohesion and consequent aneuploidy were implicated in oncogenic action. However, 23 cohesin-mutated cases of our cohort had completely normal karyotypes, suggesting that cohesin-mutated cells were not clonally selected because of aneuploidy. Alternatively, a growing body of evidence suggests that cohesin regulate gene expression, arguing for the possibility that cohesin mutations might participate in leukemogenesis through deregulated gene expression. Of additional note, the number of non-silent mutations determined by our whole exome analysis was significantly higher in 6 cohesin-mutated cases compared to non-mutated cases. Since cohesin also participates in post-replicative DNA repair, this may suggest that compromised cohesin function could induce DNA hypermutability and contribute to leukemogenesis. In conclusion, we report a new class of common genetic targets in myeloid malignancies, the cohesin complex. Our findings highlight a possible role of compromised cohesin functions in myeloid leukemogenesis. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Equity Ownership. Alpermann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document