Phase I adoptive cellular therapy trial with ex-vivo stimulated autologous CD8+ T-cells against multiple targets (ACTolog IMA101) in patients with relapsed and/or refractory solid cancers.

2018 ◽  
Vol 36 (5_suppl) ◽  
pp. TPS77-TPS77
Author(s):  
Apostolia Maria Tsimberidou ◽  
Chad Stewart ◽  
Carsten Reinhardt ◽  
Hong Ma ◽  
Steffen Walter ◽  
...  

TPS77 Background: Adoptive cellular therapy (ACT) has dramatically changed the landscape of immunotherapy; however, only a small proportion of solid tumor patients have benefited from these advances due to i) heterogeneity of tumor antigen expression, ii) tumor escape (e.g. only one target is addressed), or iii) off-target toxicities (e.g. expression of targets on normal tissues). The ACTolog concept, utilizing antigen specific T cells (IMA101) against targets identified by the Immatics’ proprietary XPRESIDENT technology, is intended to overcome these limitations by addressing multiple novel relevant tumor antigens per patient. ACTolog is a personalized, multi-targeted ACT approach in which autologous T-cell products are manufactured against the most relevant tumor target peptides for individual patients whose tumors are positive against a predefined target warehouse. Methods: This study is an open-label first-in-human phase I trial in patients with relapsed or refractory solid tumors expressing at least one target from a warehouse of 8 cancer targets. Key eligibility criteria include: HLA-A*02:01 phenotype, qPCR expression of warehouse target(s), prior established lines of therapy, RECIST v1.1 measurable lesions, and ECOG performance status 0 or 1. At baseline, patients will undergo leukapheresis to collect mononuclear cells for manufacturing of IMA101 cells. Patients will receive their last line of established therapy during the production phase of IMA101. IMA101 will be infused after a pre-conditioning regimen (lymphodepletion) followed by LD-IL2. The primary objective is to assess safety and tolerability of IMA101. Secondary endpoints include overall response rate (RECIST and irRC), PFS and OS. The translational objective is to assess the in vivo persistence and ex vivo functionality of transferred T cells in addition to evaluation of target expression in tumors. Enrollment to the study is currently ongoing. Clinical trial information: NCT02876510 .

2021 ◽  
Vol 9 (5) ◽  
pp. e002232
Author(s):  
Karan Kohli ◽  
Lu Yao ◽  
Theodore Scott Nowicki ◽  
Shihong Zhang ◽  
Ralph Graeme Black ◽  
...  

BackgroundSynovial sarcoma (SS) and myxoid/round cell liposarcoma (MRCL) are ideal solid tumors for the development of adoptive cellular therapy (ACT) targeting NY-ESO-1, as a high frequency of tumors homogeneously express this cancer-testes antigen. Data from early phase clinical trials have shown antitumor activity after the adoptive transfer of NY-ESO-1–specific T cells. In these studies, persistence of NY-ESO-1 specific T cells is highly correlated with response to ACT, but patients often continue to have detectable transferred cells in their peripheral blood following progression.MethodWe performed a phase I clinical trial evaluating the safety of NY-ESO-1–specific endogenous T cells (ETC) following cyclophosphamide conditioning. Peripheral blood mononuclear cells (PBMCs) from treated patients were evaluated by flow cytometry and gene expression analysis as well as through ex vivo culture assays with and without IL-15.ResultsFour patients were treated in a cohort using ETC targeting NY-ESO-1 following cyclophosphamide conditioning. Treatment was well tolerated without significant toxicity, but all patients ultimately had disease progression. In two of four patients, we obtained post-treatment tumor tissue and in both, NY-ESO-1 antigen was retained despite clear detectable persisting NY-ESO-1–specific T cells in the peripheral blood. Despite a memory phenotype, these persisting cells lacked markers of proliferation or activation. However, in ex vivo culture assays, they could be induced to proliferate and kill tumor using IL-15. These results were also seen in PBMCs from two patients who received gene-engineered T-cell receptor–based products at other centers.ConclusionsETC targeting NY-ESO-1 with single-agent cyclophosphamide alone conditioning was well tolerated in patients with SS and those with MRCL. IL-15 can induce proliferation and activity in persisting NY-ESO-1–specific T cells even in patients with disease progression following ACT. These results support future work evaluating whether IL-15 could be incorporated into ACT trials post-infusion or at the time of progression.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi121-vi122
Author(s):  
Tyler Wildes ◽  
Kyle Dyson ◽  
Connor Francis ◽  
Brandon Wummer ◽  
Changlin Yang ◽  
...  

Abstract INTRODUCTION Immunotherapy is remarkably effective, yet tumor escape is common. Herein, we investigated tumor escape after adoptive cellular therapy (ACT) in intractable glioma models. These studies revealed multiple mechanisms of escape including a shift in immunogenic tumor antigens, downregulation of MHC-I, and upregulation of checkpoint molecules. Despite these changes, we HYPOTHESIZED that a new population of escape variant-specific polyclonal T cells could be generated to target immune-escaped tumors through using tumor escape variant RNA. METHODS We studied KR158B-luc glioma-bearing mice during treatment with ACT with polyclonal tumor-specific T cells. We tested the immunogenicity of primary and escaped tumors using T cell restimulation assays. We used flow cytometry and RNA profiling of whole tumors to further define escape mechanisms. To treat immune-escaped tumors, we generated escape variant-specific T cells through the use of escape variant total tumor RNA and administered these cells as ACT. RESULTS Escape mechanisms included a shift in immunogenic tumor antigens, downregulation of major histocompatibility complex (MHC) class I by 50%, and upregulation of checkpoint molecules. This included activated T cells and NK cells from tumor-draining lymph nodes expressing 50% and 30% PD-1 after ACT. Importantly, polyclonal T cells specific for escape variants displayed greater recognition of escaped tumors than primary tumors. When administered as ACT, these T cells prolonged median survival of escape variant-bearing mice by 60% (24 to 33 days, p=.0003). The rational combination of ACT with PD-1 blockade prolonged median survival of escape variant glioma-bearing mice by 110% and was dependent upon NK cells and T cells as determined by cell depletion experiments. To prevent escape from primary tumors, we combined ACT with PD-1 blockade to yield 71% long-term cures in KR158B-luc-bearing mice. CONCLUSIONS These findings suggest that the immune landscape of brain tumors is markedly different post-immunotherapy yet can still be targeted with immunotherapy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5649-5649
Author(s):  
Muhammad Usman ◽  
Muhammad Junaid Tariq ◽  
Awais Ijaz ◽  
Muhammad Asad Fraz ◽  
Ali Younas Khan ◽  
...  

Abstract Introduction Advancement in multiple myeloma (MM) has led to the development of adoptive cell transfer (ACT), an immunotherapeutic modality that utilizes body's own effector cells (T cells or Natural killer cells) to kill cancer cells. These include chimeric antigen receptor T cells (CAR-T cells), genetically modified T cell receptors (TCRs), activated Natural Killer (NK) cells and native T cells armed with bispecific antibodies. Potential antigen targets for TCRs in MM include B cell maturation antigen (BCMA), CD19, CD138, NKG2D, Ig kappa, LeY and SLMF7/CS-1, MAGE A3 and NY-ESO-1. The purpose of this review is to summarize various types of cellular therapies which are being tested in early phase clinical trials for treatment of MM. Methods We performed a comprehensive literature search (PubMed, EMBASE, AdisInsight and Clinicaltrials.gov) between January 2008 to December 2017, to identify early phase (I and I/II) trials of cellular therapy for the treatment of MM. We included studies involving cellular therapy, irrespective of the geo-location, age, sex or specific eligibility criteria. Results With initial search yielded 2537 phase I and phase I/II studies. After initial screening by two reviewers and categorization by mechanism of action, 37 clinical trials (CTs) that involved ACT were included. Out of the 37 trials, 18 are active or completed (Table 1) and 19 are recruiting subjects (Table 2). Most explored mechanism of action (21 CTs) in these trials is CAR T-cell therapy directed against B cell maturation antigen (BCMA). Anti-BCMA CART has shown promising efficacy of up to 100% objective response (OR) in a phase I trial (NCT03090659, n=22). In a phase I/II trial by Fan et al. (n=19), 6 (32%) patients showed complete response (CR), 12 (63%) developed near complete response (nCR), 1 (5%) achieved partial response (PR). In phase I trial by Ali et al. (2016, n=12), anti-BCMA CART cells led to stringent complete response (sCR) in 1 (8%) patient, very good partial response (VGPR) in 2 (16%), PR in 1 (8%) and stable disease (SD) in 8 (66%). Grade 3-4 cytokine release syndrome (CRS) was reported in 3 (25%) patients receiving high dose of CAR T cells (9 x 106 / kg in 2 patients and 3 x 106 /kg in 1 patient). Cohen et al., 2017 (n= 24) reported the objective response rate (ORR) defined as ≥PR in 11 (47%) patients. In 75% of patients with grade 3-4 CRS, tocilizumab/siltuximab was used to manage CRS. According to Garfall et al. (2018, n=10), administration of anti-CD19 CART after autologus stem cell transplant (auto-SCT) improved progression free survival (PFS) in 2 (20%) patients compared to PFS due to auto-SCT done earlier in same patients (from 181 to 479 days and 127 to 249 days). Leivas et al. (2016, n=5) showed that infusion of expanded and activated natural killer cells (NKAE) with lenalidomide have shown better response (PR=1, SD=1, SD to PD=1) than NKAE with bortezomib (SD=1, PD=1). In 10 (83%) patients, VGPR or better response was achieved after infusion of allogenic cord blood derived NK cells along with auto-SCT (Shah et al., 2017). Rapoport et al. (2017, n=25) infused CAR T-cells against cancer testes antigens (NY-ESO-1, LAGE-1a) and demonstrated the OR in 19 (76%) patients (1 sCR, 12 VGPR, 6PR) at day 100. Al-Kadhimi et al. (2011, n=9) administered activated autologous T cells armed with bispecific antibodies against CD3 and CD20 (aATC) prior to auto-SCT. Two patients achieved VGPR, two patients achieved CR while five patients developed PR. Fowler et al. (2016, n=20) used type 1 polarized, rapamycin resistant T (T1-Rapa) cells after auto-SCT in high risk myeloma patients. Out of 19 evaluable patients, 5 had ongoing CR (at 733, 787, 847, 926, 1186 days) while 14 patients had disease progression (from 64 to 917 days). No adverse effects or dose limiting toxicity was observed in any of the patients. Conclusion Adoptive cellular therapy has shown excellent clinical activity against myeloma cells in relapsed refractory patients. The adverse events like CRS and infusion reactions are concerning but manageable. The results of trials involving T cells targeting BCMA are very encouraging. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2673-2673
Author(s):  
Jessica Liegel ◽  
Dina Stroopinsky ◽  
Haider Ghiasuddin ◽  
Adam Morin ◽  
Marzia Capelletti ◽  
...  

Introduction: Our group has developed a novel vaccine using patient-derived acute myeloid leukemia (AML) cells and autologous dendritic cells (DCs), capable of presenting a broad array of leukemia antigens. In a phase I/II clinical trial DC/AML vaccination led to an expansion of leukemia-specific T cells. We hypothesized that the fusion vaccine offered a unique platform for ex vivo expansion of functionally potent leukemia specific T cells with broad specificity targeting shared and tumor specific neoantigens. We postulated that incorporating 4-1BB (CD137) mediated co-stimulation would further enhance activation of antigen specific T cells and the development of a crucial memory response as well as promote survival and persistence. Here we describe therapeutic exploration of the use of 4-1BB to augment vaccine-educated T cells for adoptive cellular therapy in an immunocompetent murine model. Methods: DC/AML fusion vaccine was generated using DCs obtained from C57BL/6J mice and syngeneic C1498 AML cells as previously described. T cells were obtained from splenocytes after magnetic bead isolation and cultured with irradiated DC/AML fusion vaccine in the presence of IL-15 and IL-7. Following co-culture, 4-1BB positive T cells were ligated using agonistic 4-1BB antibody (3H3 clone, BioXCell) and further selected with RatIgG2a magnetic beads (Easy Sep). Subsequently T cells were expanded with anti-CD3/CD28 activation beads (Dynabeads). In vivo, mice underwent retro-orbital inoculation with C1498 and vaccination with irradiated fusion cells the following day. Agonistic mouse anti-4-1BB antibody was injected intraperitoneally on day 4 and day 7. In addition, C1498 cells were transduced with Mcherry/luciferase and a reproducible model of disease progression was established. Results: DC/fusion stimulated T cells showed increased immune activation as measured by multichannel flow cytometric analysis. Compared to unstimulated T cells, there was 5-fold increase in CD4+CD25+CD69+, and a 10-fold and 7-fold increase in 4-1BB and intracellular IFNƔ expression on CD8+ cells respectively. Following agonistic 4-1BB ligation and bead isolation, the proliferation rate was increased in the 4-1BB positive fraction as compared to both 4-1BB negative cells and unstimulated T cells. In addition, the 4-1BB positive fraction demonstrated increased cytotoxicity, as measured by a CTL assay detecting granzyme B with 1:10 tumor to effector cells. A shift from naïve to memory T cell phenotype was also observed. Following DC/fusion stimulation, CD44+CD62L- cells comprised 67% of CD8+ cells versus 20% without stimulation, the latter reflecting the effect of cytokines alone. Following 4-1BB ligation and anti-CD3/CD28 bead expansion, this phenotype was retained with the CD4+ and CD8+ effector memory and central memory compartments comprising the majority of T cells. Such findings are significant as presence of memory T cell populations are a critical component for successful adoptive cell transfer. The effect of agonistic 4-1BB antibody following vaccination was evaluated in vivo in an aggressive immunocompetent murine AML model. The combination of DC/AML fusion vaccine with 4-1BB antibody was associated with increased long-term survival (>120 days) of 40% versus 20% of mice treated with vaccine alone while all controls required euthanasia by 40 days. Conclusion: In the current study we have demonstrated the ability of DC/AML fusion vaccine to stimulate T cells ex-vivo as demonstrated by both early-activation (CD25,CD69), upregulation of antigen-specific markers (CD137) and cytokine secretion. Further enhancement of the cellular product using agonistic 4-1BB ligation and isolation simultaneously enriches for antigen-activated cells, as demonstrated by more potent cytotoxicity, as well as promoting memory phenotype and survival. Use of 4-1BB ligation for antigen-specific selection while providing an agonistic co-stimulatory signal is a potentially novel approach for development of non-engineered T cells. Ongoing experiments evaluating the efficacy of 4-1BB selected vaccine educated T cells using bioluminescence monitoring will be reported as well as in vitro use of patient-derived T cells. Disclosures Kufe: Canbas: Consultancy, Honoraria; Victa BioTherapeutics: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees; Genus Oncology: Equity Ownership; Hillstream BioPharma: Equity Ownership; Reata Pharmaceuticals: Consultancy, Equity Ownership, Honoraria; Nanogen Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Rosenblatt:Dava Oncology: Other: Education; Partner Tx: Other: Advisory Board; Parexel: Consultancy; Celgene: Research Funding; BMS: Research Funding; Amgen: Other: Advisory Board; Merck: Other: Advisory Board; BMS: Other: Advisory Board ; Imaging Endpoint: Consultancy. Avigan:Takeda: Consultancy; Parexel: Consultancy; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pharmacyclics: Research Funding; Juno: Membership on an entity's Board of Directors or advisory committees; Partners Tx: Membership on an entity's Board of Directors or advisory committees; Partner Tx: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 229-235 ◽  
Author(s):  
Yongqing Li ◽  
Cassian Yee

Efforts to reproducibly isolate tumor antigen–specific T cells from patients would be facilitated by removing immunoregulatory barriers. Using a human model for eliciting T-cell responses to tumor-associated antigens, we develop a novel strategy that eliminates nearly all Foxp3-expressing cells through the combination of CD25 depletion and IL-21 treatment resulting in a more than 150-fold decrease in Foxp3+ cells to virtually undetectable levels and a more than 200-fold increase in antigen-specific cytotoxic T lymphocytes (CTLs). The extent of Foxp3 elimination and degree of expansion of antigen-specific CTLs shown in this study have not previously been achievable and are unique to IL-21. We demonstrate for the first time a possible mechanism for IL-21–mediated expansion of antigen-specific CTLs that involves suppression of Foxp3-expressing cells and reversal of inhibition to tumor-associated antigen–specific CTL generation in vitro. Taken together, the combination of CD25 depletion and IL-21 exposure, by releasing regulatory constraints, leads to markedly enhanced CTL induction and represents a robust strategy for the ex vivo generation of antigen-specific T cells for adoptive cellular therapy.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi54-vi54
Author(s):  
Gaetano Finocchiaro ◽  
Bernhard Gentner ◽  
Eoli Marica ◽  
Farina Francesca ◽  
Alessia Capotondo ◽  
...  

Abstract Temferon is an ex vivo gene therapy consisting of autologous HSPCs genetically modified to deliver IFN-α2 within the tumor microenvironment (TME) by Tie-2 expressing macrophages. TEM-GBM is an open-label, Phase I/IIa dose-escalation study evaluating safety and efficacy of Temferon in up to 21 newly diagnosed GBM patients with unmethylated MGMT. Autologous HSPCs are transduced with a LVV encoding for IFN-a2 gene. As of 30th April 2021, 18 patients have been enrolled; 13 received Temferon (D+0) with follow-up of 8 – 662 days. After conditioning and Temferon infusion, a rapid engraftment and hematological recovery occurred, with median neutrophil and platelet engraftment at D+13 and D+12, respectively. No dose limiting toxicities were reported. Temferon-derived cells were found within 14 days post treatment and persisted albeit at lower levels in the long-term. Five deaths occurred: one at +478, three at +322, +340 and +402 days due to PD, and the fourth at +60 due to complications following the conditioning regimen. Eight patients had PD (-12 to +239). SAEs include respiratory tract infections, pulmonary embolism, CMV and C.Diff infections, febrile neutropenia, hemiparesis, seizure, brain abscess, worsening of performance status and respiratory failure compatible with ASCT, concomitant medications and PD. Four patients underwent second surgery. Recurrent tumors had gene-marked cells present and increased expression of ISGs compared to diagnosis, indicative of local IFNa release by TEMs. In one patient, a stable lesion had a higher proportion of T cells and TEMs within the myeloid infiltrate and an increased IFN-response signature than in a progressing lesion. Characterization of T-cell immune repertoire suggests the expansion of tumor-associated clones. TME characterization by scRNA and TCR sequencing is ongoing. Interim results show that Temferon is well tolerated, with no dose limiting toxicities identified to date and provide initial evidence of potential immune system activation within the TME.


Sign in / Sign up

Export Citation Format

Share Document