A novel mutation panel for predicting etoposide in small cell lung cancer.

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e20090-e20090
Author(s):  
Peng Luo ◽  
Zhengang Qiu ◽  
Anqi Lin ◽  
Kun Li ◽  
Weiyin Lin ◽  
...  

e20090 Background: Platinum-based chemotherapy, consisting of etoposide and cisplatin (EP), has been the cornerstone of therapy for extensive-stage small cell lung cancer (ES-SCLC) for decades. Despite the marked initial sensitivity of SCLC to chemotherapy, EP regimens cannot avoid the emergence of drug resistance in clinical practice. With the rise of new chemotherapy regimens in recent years and the primary resistance or insensitivity of ES-SCLC to EP regimens, it is desirable to be able to identify patients with resistant or insensitive ES-SCLC. Methods: The sequencing and drug sensitivity data of SCLC cell lines were provided by The Genomics of Drug Sensitivity in Cancer Project (GDSC); the data regarding of sensitivity to etoposide of 54 SCLC cell lines were analyzed, and etoposide-sensitive cell lines and etoposide-resistant cell lines were differentiated according to the IC50 values defined by the GDSC. ROC curve analysis was performed on all mutations and combinations of mutations to select the optimal panel to predict resistance to etoposide. Results: Receiver Operating Characteristic(ROC) analysis of etoposide resistance revealed that the most significant single gene mutation indicating resistance to etoposide was CSMD3, and the accuracy of predicting resistance to etoposide proved to be the highest when there was any mutation in CSMD3/PCLO/RYR1/EPB41L3, area under the curve (AUC) = 0.804 (95% confidence interval (CI): 0.679-0.930, p < 0.001). Conclusions: This study found that a panel with four genes (CSMD3, EPB41L3, PCLO, and RYR1) can accurately predict sensitivity to etoposide. These findings provide new insights into the overall treatment for patients with ES-SCLC that is resistant or insensitive to etoposide.

Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3477
Author(s):  
Elisabetta Sauta ◽  
Francesca Reggiani ◽  
Federica Torricelli ◽  
Eleonora Zanetti ◽  
Elena Tagliavini ◽  
...  

Lung cancer is the leading cause of cancer-related human death. It is a heterogeneous disease, classified in two main histotypes, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), which is further subdivided into squamous-cell carcinoma (SCC) and adenocarcinoma (AD) subtypes. Despite the introduction of innovative therapeutics, mainly designed to specifically treat AD patients, the prognosis of lung cancer remains poor. In particular, available treatments for SCLC and SCC patients are currently limited to platinum-based chemotherapy and immune checkpoint inhibitors. In this work, we used an integrative approach to identify novel vulnerabilities in lung cancer. First, we compared the data from a CRISPR/Cas9 dependency screening performed in our laboratory with Cancer Dependency Map Project data, essentiality comprising information on 73 lung cancer cell lines. Next, to identify relevant therapeutic targets, we integrated dependency data with pharmacological data and TCGA gene expression information. Through this analysis, we identified CSNK1A1, KDM2A, and LTB4R2 as relevant druggable essentiality genes in lung cancer. We validated the antiproliferative effect of genetic or pharmacological inhibition of these genes in two lung cancer cell lines. Overall, our results identified new vulnerabilities associated with different lung cancer histotypes, laying the basis for the development of new therapeutic strategies.


Lung Cancer ◽  
1994 ◽  
Vol 11 ◽  
pp. 29
Author(s):  
E.G. Feigal ◽  
S.M. Steinberg ◽  
A.F. Gazdar ◽  
E.K. Russell ◽  
D.C. Ihde ◽  
...  

Author(s):  
Yonglin Yi ◽  
Zhengang Qiu ◽  
Zifu Yao ◽  
Anqi Lin ◽  
Yimin Qin ◽  
...  

Platinum-based chemotherapy is the first-line treatment for small cell lung cancer (SCLC). However, due to patients developing a resistance to the drug, most experience relapse and their cancer can become untreatable. A large number of recent studies have found that platinum drug sensitivity of various cancers is affected by specific gene mutations, and so with this study, we attempted to find an effective genetic biomarker in SCLC patients that indicates their sensitivity to platinum-based drugs. To do this, we first analyzed whole exome sequencing (WES) and clinical data from two cohorts to find gene mutations related to the prognosis and to the platinum drug sensitivity of SCLC patients. The cohorts used were the Zhujiang cohort (N = 138) and the cohort reported by George et al. (N = 101). We then carried out gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) to investigate possible molecular mechanisms through which these gene mutations affect patient prognosis and platinum drug sensitivity. We found that for SCLC patients, CAMSAP1 mutation can activate anti-tumor immunity, mediate tumor cell apoptosis, inhibit epithelial-mesenchymal transition (EMT), improve prognosis, and improve platinum drug sensitivity, suggesting that CAMSAP1 mutation may be a potential biomarker indicating platinum drug sensitivity and patient prognosis in SCLC.


2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Katrina Kildey ◽  
Neha S. Gandhi ◽  
Katherine B. Sahin ◽  
Esha T. Shah ◽  
Eric Boittier ◽  
...  

AbstractPlatinum-based chemotherapy remains the cornerstone of treatment for most non-small cell lung cancer (NSCLC) cases either as maintenance therapy or in combination with immunotherapy. However, resistance remains a primary issue. Our findings point to the possibility of exploiting levels of cell division cycle associated protein-3 (CDCA3) to improve response of NSCLC tumours to therapy. We demonstrate that in patients and in vitro analyses, CDCA3 levels correlate with measures of genome instability and platinum sensitivity, whereby CDCA3high tumours are sensitive to cisplatin and carboplatin. In NSCLC, CDCA3 protein levels are regulated by the ubiquitin ligase APC/C and cofactor Cdh1. Here, we identified that the degradation of CDCA3 is modulated by activity of casein kinase 2 (CK2) which promotes an interaction between CDCA3 and Cdh1. Supporting this, pharmacological inhibition of CK2 with CX-4945 disrupts CDCA3 degradation, elevating CDCA3 levels and increasing sensitivity to platinum agents. We propose that combining CK2 inhibitors with platinum-based chemotherapy could enhance platinum efficacy in CDCA3low NSCLC tumours and benefit patients.


2021 ◽  
Vol 10 (5) ◽  
pp. 1126
Author(s):  
Michał Szczyrek ◽  
Radosław Mlak ◽  
Aneta Szudy-Szczyrek ◽  
Karolina Kędziora ◽  
Teresa Małecka-Massalska ◽  
...  

Caspase 8 is a protein involved in the process of cell apoptosis, which may affect the efficacy of anti-cancer treatment. The aim of our study was to determine the impact of polymorphisms in the CASP-8 gene encoding caspase 8 on the prognosis in non-small-cell lung cancer (NSCLC). The study involved 99 patients with newly diagnosed locally advanced or metastatic NSCLC treated with platinum-based chemotherapy. The presence of the GG genotype was associated with distant metastases, smoking, and a family history of cancer. The higher risk of early progression was associated with weight loss and the CASP-8 genotype (GG vs. AG or AA: 20.51% vs. 2.86%). The higher risk of progression-free survival (PFS) shortening was associated with a higher stage of disease (hazard ratio (HR) = 2.50, 95% CI: 1.61–3.89, p < 0.0001), distant metastases (HR = 2.30, 95% CI: 1.42–3.72, p = 0.0016), and the GG genotype (HR = 1.68, 95% CI: 1.10–2.57, p = 0.0152). The influence of the GG genotype on the PFS was confirmed in a multivariate analysis (HR = 1.80, 95% CI: 1.06–3.05, p = 0.0317). We did not confirm the influence of CASP-8 genotypes on the overall survival (OS).


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Kaili Long ◽  
Lili Gu ◽  
Lulu Li ◽  
Ziyu Zhang ◽  
Enjie Li ◽  
...  

AbstractApurinic/apyrimidinic endonuclease 1 (APE1) plays a critical role in the base excision repair (BER) pathway, which is responsible for the excision of apurinic sites (AP sites). In non-small cell lung cancer (NSCLC), APE1 is highly expressed and associated with poor patient prognosis. The suppression of APE1 could lead to the accumulation of unrepaired DNA damage in cells. Therefore, APE1 is viewed as an important marker of malignant tumors and could serve as a potent target for the development of antitumor drugs. In this study, we performed a high-throughput virtual screening of a small-molecule library using the three-dimensional structure of APE1 protein. Using the AP site cleavage assay and a cell survival assay, we identified a small molecular compound, NO.0449-0145, to act as an APE1 inhibitor. Treatment with NO.0449-0145 induced DNA damage, apoptosis, pyroptosis, and necroptosis in the NSCLC cell lines A549 and NCI-H460. This inhibitor was also able to impede cancer progression in an NCI-H460 mouse model. Moreover, NO.0449-0145 overcame both cisplatin- and erlotinib-resistance in NSCLC cell lines. These findings underscore the importance of APE1 as a therapeutic target in NSCLC and offer a paradigm for the development of small-molecule drugs that target key DNA repair proteins for the treatment of NSCLC and other cancers.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Walter Z. Wang ◽  
Konstantin Shilo ◽  
Joseph M. Amann ◽  
Alyssa Shulman ◽  
Mohammad Hojjat-Farsangi ◽  
...  

AbstractSmall cell lung cancer (SCLC) remains a deadly form of cancer, with a 5-year survival rate of less than 10 percent, necessitating novel therapies. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncofetal protein that is emerging as a therapeutic target and is co-expressed with BCL2 in multiple tumor types due to microRNA coregulation. We hypothesize that ROR1-targeted therapy is effective in small cell lung cancer and synergizes with therapeutic BCL2 inhibition. Tissue microarrays (TMAs) and formalin-fixed paraffin-embedded (FFPE) SCLC patient samples were utilized to determine the prevalence of ROR1 and BCL2 expression in SCLC. Eight SCLC-derived cell lines were used to determine the antitumor activity of a small molecule ROR1 inhibitor (KAN0441571C) alone and in combination with the BCL2 inhibitor venetoclax. The Chou-Talalay method was utilized to determine synergy with the drug combination. ROR1 and BCL2 protein expression was identified in 93% (52/56) and 86% (48/56) of SCLC patient samples, respectively. Similarly, ROR1 and BCL2 were shown by qRT-PCR to have elevated expression in 79% (22/28) and 100% (28/28) of SCLC patient samples, respectively. KAN0441571C displayed efficacy in 8 SCLC cell lines, with an IC50 of 500 nM or less. Synergy as defined by a combination index of <1 via the Chou-Talalay method between KAN0441571C and venetoclax was demonstrated in 8 SCLC cell lines. We have shown that ROR1 inhibition is synergistic with BCL2 inhibition in SCLC models and shows promise as a novel therapeutic target in SCLC.


Sign in / Sign up

Export Citation Format

Share Document