Oncolytic virus pelareorep plus carfilzomib phase I trial in carfilzomib-refractory patients (NCI 9603): Responses with cytokine storm.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 8535-8535
Author(s):  
Douglas Weston Sborov ◽  
Domenico Viola ◽  
Ada A Dona ◽  
Ajay K. Nooka ◽  
Jonathan L. Kaufman ◽  
...  

8535 Background: Viral oncolytic therapy with intravenous Pelareorep, the infusible form of reovirus, is supported by preclinical data indicating that its antitumor activity results from direct cytolysis and an immune response against infected MM cells. Our preclinical data has shown that monocytes serve as carriers of reovirus from the peripheral blood to the bone marrow (Dona et al, ASH, 2019). In this abstract we present patients treated to date that were Carfilzomib refractory at enrollment. Methods: Pelareorep (P), Carfilzomib (K), and dexamethasone (d) were all infused on days 1, 2, 8, 9, 15 and 16 of a 28-day cycle. Patients were pretreated with dexamethasone 20 mg intravenously, then Carfilzomib 20 mg/m2 on days 1 and 2 of cycle 1, and 56 mg/m2 thereafter. Pelareorep dose levels were at 3x1010, 4.5*1010, and planned 9*1010 median tissue culture infectious dose (TCID50). Results: All 6 evaluable patients showed reovirus infection in the post-treatment marrow aspirates cycle 1 day 9. Despite all patients having Carfilzomib-refractory disease, 2 patients achieved partial responses, two patients with short duration stable disease but few side effects, and 2 patients with PD. Of the two responders, one patient developed fever and grade 4 thrombocytopenia during cycle 1 and withdrew mid cycle. The other patient with a PR developed a cytokine storm - this patient presented cycle 1 day 3 hypoxemic with pneumonia, systolic failure (LVEF 69%-- > 26%), with biochemical evidence of hemophagocytic syndrome with elevated IL-2R, IL-6, and ferritin > 25K. This patient responded to tocilizumab, but ultimately died two weeks later with sepsis. Autopsy revealed pneumonia, no areas of reovirus infection other than in myeloma cells, and reovirus productive infection in 5-35% of myeloma cells (i.e. capsid protein). Conclusions: While infection of myeloma cells was seen in all evaluable patients on cycle 1 day 9, those with a clinical response demonstrated concomitant CD8 & NK cell recruitment, PD L1 upregulation, activated caspase-3 expression, increased viral protein production within the myeloma cells, and these patients demonstrated mild to severe signs and symptoms consistent with secondary HLH. This is the first report of cytokine storm after oncolytic virus in a patient with a blood cancer, a syndrome thought to be related to T-cell activation from the combination treatment. This trial was supported by the NCI Division of Cancer Treatment & Diagnosis Cancer Therapy Evaluation Program (CTEP). Clinical trial information: NCT02101944 .

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sizhe Liu ◽  
Vasiliy Galat ◽  
Yekaterina Galat4 ◽  
Yoo Kyung Annie Lee ◽  
Derek Wainwright ◽  
...  

AbstractNatural killer (NK) cell is a specialized immune effector cell type that plays a critical role in immune activation against abnormal cells. Different from events required for T cell activation, NK cell activation is governed by the interaction of NK receptors with target cells, independent of antigen processing and presentation. Due to relatively unsophisticated cues for activation, NK cell has gained significant attention in the field of cancer immunotherapy. Many efforts are emerging for developing and engineering NK cell-based cancer immunotherapy. In this review, we provide our current understandings of NK cell biology, ongoing pre-clinical and clinical development of NK cell-based therapies and discuss the progress, challenges, and future perspectives.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Gianchecchi ◽  
Domenico V. Delfino ◽  
Alessandra Fierabracci

Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yunqian Qiao ◽  
Yangmin Qiu ◽  
Jie Ding ◽  
Nana Luo ◽  
Hao Wang ◽  
...  

AbstractExpression of the cell surface receptor CD137 has been shown to enhance anti-cancer T cell function via engagement with its natural ligand 4-1BBL. CD137 ligation with engineered ligands has emerged as a cancer immunotherapy strategy, yet clinical development of agonists has been hindered by either toxicity or limited efficacy. Here we show that a CD137/PD-1 bispecific antibody, IBI319, is able to overcome these limitations by coupling CD137 activation to PD-1-crosslinking. In CT26 and MC38 syngeneic mouse tumour models, IBI319 restricts T cell co-stimulation to PD-1-rich microenvironments, such as tumours and tumour-draining lymph nodes, hence systemic (liver) toxicity arising from generalised T cell activation is reduced. Besides limiting systemic T cell co-stimulation, the anti-PD-1 arm of IBI319 also exhibits checkpoint blockade functions, with an overall result of T and NK cell infiltration into tumours. Toxicology profiling in non-human primates shows that IBI319 is a well-tolerated molecule with IgG-like pharmacokinetic properties, thus a suitable candidate for further clinical development.


2018 ◽  
Vol 10 (471) ◽  
pp. eaau0417 ◽  
Author(s):  
Praveen K. Bommareddy ◽  
Salvatore Aspromonte ◽  
Andrew Zloza ◽  
Samuel D. Rabkin ◽  
Howard L. Kaufman

Melanoma is an aggressive cutaneous malignancy, but advances over the past decade have resulted in multiple new therapeutic options, including molecularly targeted therapy, immunotherapy, and oncolytic virus therapy. Talimogene laherparepvec (T-VEC) is a herpes simplex type 1 oncolytic virus, and trametinib is a MEK inhibitor approved for treatment of melanoma. Therapeutic responses with T-VEC are often limited, and BRAF/MEK inhibition is complicated by drug resistance. We observed that the combination of T-VEC and trametinib resulted in enhanced melanoma cell death in vitro. Further, combination treatment resulted in delayed tumor growth and improved survival in mouse models. Tumor regression was dependent on activated CD8+ T cells and Batf3+ dendritic cells. We also observed antigen spreading and induction of an inflammatory gene signature, including increased expression of PD-L1. Triple therapy with the combination of T-VEC, MEK inhibition, and anti–PD-1 antibody further augmented responses. These data support clinical development of combination oncolytic viruses, MEK inhibitors, and checkpoint blockade in patients with melanoma.


Author(s):  
Serge Grazioli ◽  
Fedora Tavaglione ◽  
Giulia Torriani ◽  
Noemie Wagner ◽  
Marie Rohr ◽  
...  

Abstract Background Recently, cases of multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19 have been reported worldwide. Negative RT-PCR testing associated with positive serology in most cases suggests a post-infectious syndrome. Because the pathophysiology of this syndrome is still poorly understood, extensive virological and immunological investigations are needed. Methods We report a series of four pediatric patients admitted to Geneva University Hospitals with persistent fever and laboratory evidence of inflammation meeting published definition of MIS-C related to COVID-19, to whom an extensive virological and immunological workup was performed. Results RT-PCRs on multiple anatomical compartments were negative whereas anti-SARS-CoV-2 IgA and IgG were strongly positive by ELISA and immunofluorescence. Both pseudo- and full virus neutralization assays showed the presence of neutralizing antibodies in all children, confirming a recent infection with SARS-CoV-2. Analyses of cytokine profiles revealed an elevation in all cytokines, as reported in adults with severe COVID-19. Although differing in clinical presentation, some features of MIS-C show phenotypic overlap with haemophagocytic lymphohistiocytosis (HLH). In contrast to patients with primary HLH, our patients showed normal perforin expression and NK cell degranulation. The levels of soluble IL-2 receptor (sIL-2R) correlated with the severity of disease, reflecting recent T-cell activation. Conclusion Our findings suggest that MIS-C related to COVID-19 is caused by a post-infectious inflammatory syndrome associated with elevation in all cytokines, and markers of recent T-cell activation (sIL-2R) occurring despite a strong and specific humoral response to SARS-CoV2. Further functional and genetic analyses are essential to better understand the mechanisms of host-pathogen interactions.


Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3238-3248 ◽  
Author(s):  
Enrico Lugli ◽  
Carolyn K. Goldman ◽  
Liyanage P. Perera ◽  
Jeremy Smedley ◽  
Rhonda Pung ◽  
...  

Abstract Interleukin-15 (IL-15) is a cytokine with potential therapeutic application in individuals with cancer or immunodeficiency to promote natural killer (NK)– and T-cell activation and proliferation or in vaccination protocols to generate long-lived memory T cells. Here we report that 10-50 μg/kg IL-15 administered intravenously daily for 12 days to rhesus macaques has both short- and long-lasting effects on T-cell homeostasis. Peripheral blood lymphopenia preceded a dramatic expansion of NK cells and memory CD8 T cells in the circulation, particularly a 4-fold expansion of central memory CD8 T cells and a 6-fold expansion of effector memory CD8 T cells. This expansion is a consequence of their activation in multiple tissues. A concomitant inverted CD4/CD8 T-cell ratio was observed throughout the body at day 13, a result of preferential CD8 expansion. Expanded T- and NK-cell populations declined in the blood soon after IL-15 was stopped, suggesting migration to extralymphoid sites. By day 48, homeostasis appears restored throughout the body, with the exception of the maintenance of an inverted CD4/CD8 ratio in lymph nodes. Thus, IL-15 generates a dramatic expansion of short-lived memory CD8 T cells and NK cells in immunocompetent macaques and has long-term effects on the balance of CD4+ and CD8+ T cells.


Blood ◽  
2007 ◽  
Vol 110 (9) ◽  
pp. 3253-3262 ◽  
Author(s):  
Thanyalak Tha-In ◽  
Herold J. Metselaar ◽  
Hugo W. Tilanus ◽  
Zwier M. A. Groothuismink ◽  
Ernst J. Kuipers ◽  
...  

AbstractThe modes of action of intravenous immunoglobulins (IVIgs) in exerting their immunomodulatory properties are broad and not fully understood. IVIgs can modulate the function of various immune cells, including suppressing the capacity of dendritic cells (DCs) to stimulate T cells. In the present study, we showed that DCs matured in the presence of IVIgs (IVIg-DCs) activated NK cells, and increased their interferon-γ production and degranulation. The activated NK cells induced apoptosis of the majority of IVIg-DCs. In consequence, only in the presence of NK cells, IVIg-DCs were 4-fold impaired in their T-cell priming capacity. This was due to NK-cell–mediated antibody-dependent cellular cytotoxicity (ADCC) to IVIg-DCs, probably induced by IgG multimers, which could be abrogated by blockade of CD16 on NK cells. Furthermore, IVIg-DCs down-regulated the expression of NKp30 and KIR receptors, and induced the generation of CD56brightCD16−CCR7+ lymph node–type NK cells. Our results identify a novel pathway, in which IVIgs induce ADCC of mature DCs by NK cells, which downsizes the antigen-presenting pool and inhibits T-cell priming. By influencing the interaction between DCs and NK cells, IVIgs modulate the ability of the innate immunity to trigger T-cell activation, a mechanism that can “cool down” the immune system at times of activation.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 8087-8087 ◽  
Author(s):  
Balaji Balasa ◽  
Rui Yun ◽  
Nicole Belmar ◽  
Gary Starling ◽  
Audie Rice

8087 Background: Elo is a monoclonal IgG1 antibody targeting CS1, a cell surface glycoprotein highly expressed on >95% of myeloma cells. In preclinical models Elo exerts anti-myeloma activity via NK cell-mediated antibody-dependent cellular cytotoxicity. Len is an immunomodulatory agent that may activate NK cells. The combination of Elo + Len synergistically enhanced anti-tumor activity in myeloma xenograft models. We investigated the mechanism of enhancing NK cell activation and myeloma cell killing with Elo + Len. Methods: Human PBMC/OPM-2 co-cultures were treated for 24-72h with Elo, Len, or Elo + Len. Activation markers and adhesion receptors were evaluated by flow cytometry. Cytokines were measured by Luminex and ELISpot assays. Cytotoxicity was assessed by cell counting. Results: Elo + Len increased IFN-γ secretion significantly more than Elo or Len alone. IFN-γ elevates ICAM-1 expression, and ICAM-1 surface expression on OPM-2 target cells increased synergistically with Elo + Len. Elo, Elo + Len but not Len increased expression of CD25 (IL-2Rα) on NK cells. Len increased the levels of IL-2, but those were decreased in the presence of Elo due to increased consumption by CD25 expressing NK cells. Blocking uptake of IL-2 with anti-CD25 resulted in higher IL-2 levels than with Len. ELISpot assays confirmed that Elo + Len significantly increased the number of IL-2-producing cell colonies compared with Elo or Len. Elo induced NK dependent myeloma cell killing, and the effect was significantly higher with Elo + Len. Conclusions: Elo alone activated NK cells and mediated the killing of myeloma cells in PBMC/OPM-2 co-cultures. Elo + Len synergistically enhanced myeloma cell killing and increased expression/production of IFN-γ, ICAM-1, IL-2, and CD25. [Table: see text]


Blood ◽  
2008 ◽  
Vol 112 (10) ◽  
pp. 4080-4089 ◽  
Author(s):  
Norman Nausch ◽  
Ioanna E. Galani ◽  
Eva Schlecker ◽  
Adelheid Cerwenka

Abstract Myeloid-derived suppressor cells (MDSCs) accumulate in cancer patients and tumor-bearing mice and potently suppress T-cell activation. In this study, we investigated whether MDSCs regu-late natural killer (NK)–cell function. We discovered that mononuclear Gr-1+CD11b+F4/80+ MDSCs isolated from RMA-S tumor-bearing mice do not suppress, but activate NK cells to produce high amounts of IFN-γ. Gr-1+CD11b+F4/80+ MDSCs isolated from tumor-bearing mice, but not myeloid cells from naive mice, expressed the ligand for the activating receptor NKG2D, RAE-1. NK-cell activation by MDSCs depended partially on the interaction of NKG2D on NK cells with RAE-1 on MDSCs. NK cells eliminated Gr-1+CD11b+F4/80+ MDSCs in vitro and upon adoptive transfer in vivo. Finally, depletion of Gr-1+ cells that comprise MDSCs confirmed their protective role against the NK-sensitive RMA-S lymphoma in vivo. Our study reveals that MDSCs do not suppress all aspects of antitumor immune responses and defines a novel, unexpected activating role of MDSCs on NK cells. Thus, our results have great impact on the design of immune therapies against cancer aiming at the manipulation of MDSCs.


Sign in / Sign up

Export Citation Format

Share Document