Effect of plinabulin, a novel late-clinical stage immunotherapeutic agent on the adaptive and innate immune system.

2020 ◽  
Vol 38 (5_suppl) ◽  
pp. 8-8
Author(s):  
Ramon W. Mohanlal ◽  
Lan Huang

8 Background: Plinabulin (Plin) is a small molecule Dendritic Cell modulator, which in the presence of antigen, increases T-cell proliferation in an antigen-dependent manner marrow. The addition of Plin to Docetaxel (Doc) improved mOS with 4.6 months vs Docetaxel monotherapy, and prolonged DoR with more than 1 year (p < 0.05), which is indicative of an immune-mediated mechanism of action (Mohanlal, ASCO-SITC 2017). Neutrophils are our first line of innate immune defense against foreign invaders. We previously reported that Plinabulin prevents chemotherapy (Chemo) Induced Neutropenia (CIN) in patients receiving Doc or TAC throughout the cycle (Doc, Doxorubicin, Cyclophosphamide) (Blayney ASH 2018, St Gallen 2019). Here we analyzed the onset time of neutrophil increase following Plin administration. In addition, we analyzed the impact of Plin on plasma haptoglobin, which is an acute phase protein with anti-inflammatory effects together with immune-enhancing effects and is an integral part of innate immunity (Kristiansen Nature 2001). Methods: Absolute neutrophil count (ANC) and haptoglobin data were analyzed from Phase 2 study BPI-2358-106 (NCT03294577) with 10 (n = 15), 20 (n = 15) and 30 mg/m2 (n = 12) Plin in Breast Cancer patients receiving TAC. Plin was administered on Day 1. ANC and Haptoglobin were analyzed by a Central Laboratory (Covance), from blood draws at predose, and post-dose Plin at Day 2,3,6,7,8,9,10,11,12,13 and 15, and changes relative to predose value were evaluated. Results: Plin dose-dependently increased ANC within 1 day (P < 0.001) and Haptoglobin within 3 days (P < 0.03) of dosing. Mean haptoglobin (P < 0.0005) and ANC (P < 0.001) levels increased with ~two-fold vs baseline levels. ANC levels remained increased for approximately 1 week and haptoglobin levels for > 3 weeks. Conclusions: Based on Plinabulin’s ability to stimulate the innate system, together with its previously reported evidence as a potent activator of the adaptive immune system (Mohanlal, ASCO-SITC 2017), it is concluded that Plinabulin is a potent stimulator of the adaptive and innate immune system. Clinical trial information: NCT03294577.

2002 ◽  
Vol 76 (9) ◽  
pp. 4580-4590 ◽  
Author(s):  
Anne-Kathrin Zaiss ◽  
Qiang Liu ◽  
Gloria P. Bowen ◽  
Norman C. W. Wong ◽  
Jeffrey S. Bartlett ◽  
...  

ABSTRACT Adenovirus vectors induce acute inflammation of infected tissues due to activation of the innate immune system and expression of numerous chemokines and cytokines in transduced target cells. In contrast, adeno-associated virus (AAV) vectors are not associated with significant inflammation experimentally or clinically. We tested the ability of AAV vectors to induce the expression of chemokines in vitro and to activate the innate immune system in vivo. In human HeLa cells and murine renal epithelium-derived cells (REC cells) the adenovirus vector AdlacZ induced the expression of multiple inflammatory chemokines including RANTES, interferon-inducible protein 10 (IP-10), interleukin-8 (IL-8), MIP-1β, and MIP-2 in a dose-dependent manner. The use of AAVlacZ did not induce the expression of these chemokines above baseline levels despite 40-fold-greater titers than AdlacZ and greater amounts of intracellular AAVlacZ genomes according to Southern and slot blot analysis. This finding confirmed that the lack of AAVlacZ induction of chemokine was not due to reduced transduction. In DBA/2 mice, the intravenous administration of 2.5 × 1011 particles of AAVlacZ resulted in the rapid induction of liver tumor necrosis factor alpha (TNF-α), RANTES, IP-10, MIP-1β, MCP-1, and MIP-2 mRNAs. However, 6 h following injection, chemokine mRNA levels returned to baseline. As expected, administration of 10-fold less AdlacZ caused an induction of liver TNF-α and chemokine mRNAs that persisted for more than 24 h posttransduction. Whereas intravenous administration of 2.5 × 1011 particles of AAVlacZ triggered a transient infiltration of neutrophils and CD11b+ cells into liver, this response stood in contrast to widespread inflammation and toxicity induced by AdlacZ. Kupffer cell depletion abolished AAVlacZ but not AdlacZ-induced chemokine expression and neutrophil infiltration. In summary, these results show that AAV vectors activate the innate immune system to a lesser extent than do adenovirus vectors and offer a possible explanation for the reduced inflammatory properties of AAV compared to adenovirus vectors.


2020 ◽  
Vol 34 (10) ◽  
pp. 1086-1097
Author(s):  
Juliette Giacobbe ◽  
Carmine M Pariante ◽  
Alessandra Borsini

Background: Electroconvulsive therapy (ECT) is a powerful and fast-acting anti-depressant strategy, often used in treatment-resistant patients. In turn, patients with treatment-resistant depression often present an increased inflammatory response. The impact of ECT on several pathophysiological mechanisms of depression has been investigated, with a focus which has largely been on cellular and synaptic plasticity. Although changes in the immune system are known to influence neurogenesis, these processes have principally been explored independently from each other in the context of ECT. Objective: The aim of this review was to compare the time-dependent consequences of acute and chronic ECT on concomitant innate immune system and neurogenesis-related outcomes measured in the central nervous system in pre-clinical studies. Results: During the few hours following acute electroconvulsive shock (ECS), the expression of the astrocytic reactivity marker glial fibrillary acidic protein (GFAP) and inflammatory genes, such as cyclooxygenase-2 (COX2), were significantly increased together with the neurogenic brain-derived neurotrophic factor (BDNF) and cell proliferation. Similarly, chronic ECS caused an initial upregulation of the same astrocytic marker, immune genes, and neurogenic factors. Interestingly, over time, inflammation appeared to be dampened, while glial activation and neurogenesis were maintained, after either acute or chronic ECS. Conclusion: Regardless of treatment duration ECS would seemingly trigger a rapid increase in inflammatory molecules, dampened over time, as well as a long-lasting activation of astrocytes and production of growth and neurotrophic factors, leading to cell proliferation. This suggests that both innate immune system response and neurogenesis might contribute to the efficacy of ECT.


PLoS ONE ◽  
2016 ◽  
Vol 11 (5) ◽  
pp. e0156374 ◽  
Author(s):  
Busra Aktas ◽  
Travis J. De Wolfe ◽  
Nasia Safdar ◽  
Benjamin J. Darien ◽  
James L. Steele

2021 ◽  
Vol 12 ◽  
Author(s):  
Richard Felix Kraus ◽  
Michael Andreas Gruber

Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.


2021 ◽  
Vol 218 (6) ◽  
Author(s):  
Valbona Mirakaj

Innate immune cells are crucial in the development and regulation of cardiovascular disease. In this issue, two groups, Davis et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20201839) and Li et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20210008) describe the impact of the innate immune system on the development of cardiovascular disease.


2006 ◽  
Vol 17 (5) ◽  
pp. 307-314 ◽  
Author(s):  
Kenneth L Rosenthal

New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs) to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs) are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals') can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.


2015 ◽  
Vol 42 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Eric W. Orlowsky ◽  
Virginia Byers Kraus

Although osteoarthritis (OA) has existed since the dawn of humanity, its pathogenesis remains poorly understood. OA is no longer considered a “wear and tear” condition but rather one driven by proteases where chronic low-grade inflammation may play a role in perpetuating proteolytic activity. While multiple factors are likely active in this process, recent evidence has implicated the innate immune system, the older or more primitive part of the body’s immune defense mechanisms. The roles of some of the components of the innate immune system have been tested in OA modelsin vivoincluding the roles of synovial macrophages and the complement system. This review is a selective overview of a large and evolving field. Insights into these mechanisms might inform our ability to identify patient subsets and give hope for the advent of novel OA therapies.


Shock ◽  
2015 ◽  
Vol 44 (3) ◽  
pp. 209-214 ◽  
Author(s):  
Falco Hietbrink ◽  
Leo Koenderman ◽  
Karlijn J. P. van Wessem ◽  
Luke P. H. Leenen

2004 ◽  
Vol 11 (1) ◽  
pp. 174-185 ◽  
Author(s):  
T. Goldammer ◽  
H. Zerbe ◽  
A. Molenaar ◽  
H.-J. Schuberth ◽  
R. M. Brunner ◽  
...  

ABSTRACT Coordination of the primary defense mechanisms against pathogens relies on the appropriate expression of pathogen recognition receptors (PRRs) triggering the early release of effector molecules of the innate immune system. To analyze the impact of this system on the counteraction of infections of the mammary gland (mastitis), we characterized the bovine gene encoding the key PRR Toll-like receptor 9 (TLR9) and mapped its precise position on chromosome BTA22. The sequence information was used to establish real-time PCR quantification assays to measure the mRNA abundances of TLR9, TLR2, and TLR4 together with those of β-defensin 5 (BNBD5), an early bactericidal effector molecule of the innate system, in healthy and infected mammary glands. Mastitis strongly increased (4- to 13-fold) the mRNA abundances of all of these genes except TLR9. Slight subclinical infections already caused a substantial increase in the copy numbers, though they did so the least for TLR9. Induction was not systemic, since mRNA abundance was low in uninfected control quarters of the udder but high in the severely infected quarters of the same animal. The number of TLR2 copies correlated well with those of TLR4, indicating coordinated regulation of these two PRRs during infection of the udder. Their coordinated regulation explains our unexpected observation that pure Staphylococcus aureus infections caused a strong increase also in TLR4 mRNA abundance. In situ hybridizations revealed that BNBD5 is expressed predominantly in the mammary epithelial cells (MEC) of the infected gland. Our data therefore suggest a significant contribution of the innate immune system to counteract mastitis and attribute a prominent effector function to the MEC.


Sign in / Sign up

Export Citation Format

Share Document