Elasticity limit and small strain hardening of γ/γ′ single crystals in an homogeneous analysis of the experimental data

2021 ◽  
pp. 121-128
Author(s):  
G. Hoinard ◽  
P. Franciosi
2011 ◽  
Vol 56 (4) ◽  
pp. 1021-1027
Author(s):  
K. Pieła

Anomaly of the Work Hardening of Zn-Cu Single Crystals Oriented for Slip in Secondary SystemsThe copper alloyed (up to 1.5%) zinc single crystals oriented for slip in non-basal systems (orientation close to < 1120 >) were subjected to compression test within a range of temperatures of 77-293K. It has been stated, that Zn-Cu crystals exhibit characteristic anomalies of the thermal dependence of yield stress and of the strain hardening exponent. Both of them are related to the change in type and sequence of active non-basal slip systems: pyramidal of the 1storder {1011} < 1123 > (Py-1) and pyramidal of the 2ndorder {1122} < 1123 > (Py-2). The temperature anomaly of the yield stress results from the change of the slip from Py-2 systems to simultaneous slip in the Py-2 and Py-1 (Py-2 + Py-1) systems, occurring in the preyielding stage. On the other hand, sequential activation of pyramidal systems taking place in advanced plastic stage (i.e. the first Py-2 and next Py-2 + Py-1 systems) is responsible for temperature anomaly of strain hardening exponent. Increase in copper addition favors the activity of Py-2 systems at the expense of Py-1 slip, what leads to a drastic differences in plastic behavior of zinc single crystals.


1965 ◽  
Vol 6 (8) ◽  
pp. 148-150 ◽  
Author(s):  
Z. S. Basinski ◽  
P. J. Jackson

Author(s):  
И.В. Боднарь ◽  
Б.Т. Чан ◽  
В.Н. Павловский ◽  
И.Е. Свитенков ◽  
Г.П. Яблонский

AbstractMnAgIn_7S_12 single crystals 16 mm in diameter and ~40 mm in length are grown by planar crystallization of the melt. It is shown that the material grown crystallizes with the formation of the cubic spinel structure. From the transmittance spectra recorded in the region of fundamental absorption in the temperature range 10–320 K, the band gap E _ g of the single crystals and its temperature dependence are determined. The dependence has a shape typical of most semiconductor materials: as the temperature is lowered, the band gap E _ g increases. A calculation is carried out, and it is shown that the calculated values are in agreement with the experimental data.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2967
Author(s):  
John Sweeney ◽  
Paul Spencer ◽  
Glen Thompson ◽  
David Barker ◽  
Phil Coates

Sheet specimens of a PLLA-based polymer have been extended at a temperature near to the glass transition in both uniaxial and planar tension, with stress relaxation observed for some time after reaching the final strain. Both axial and transverse stresses were recorded in the planar experiments. In all cases during loading, yielding at small strain was followed by a drop in true stress and then strain hardening. This was followed by stress relaxation at constant strain, during which stress dropped to reach an effectively constant level. Stresses were modelled as steady state and transient components. Steady-state components were identified with the long-term stress in stress relaxation and associated with an elastic component of the model. Transient stresses were modelled using Eyring mechanisms. The greater part of the stress during strain hardening was associated with dissipative Eyring processes. The model was successful in predicting stresses in both uniaxial and planar extension over a limited range of strain rate.


2001 ◽  
Author(s):  
Dalin Tang ◽  
Chun Yang ◽  
Shunnichi Kobayashi

Abstract There has been increasing evidence that severe stenosis may cause artery compression and plaque cap rupture leading to heart attack and stroke. The physiological conditions under which that may occur and mechanisms involved are not well understood. It has been known that severe stenosis causes critical flow and wall mechanical conditions such as flow limitation, flow separation, low and oscillating shear stress distal to the stenosis, high shear stress and low or even negative flow pressure at the throat of stenosis, artery compression or even collapse. Those conditions are related to limitation of blood supply, intimal thickening and thrombosis formation, endothelism damage, platelet activation and aggregation, plaque cap rupture (for review, see [1,2]). Due to the complexity of the problem and lack of experimental data for mechanical properties of arteries under both expansion and compression, previous models were limited primarily to flow behaviors and with various limitations (axisymmetry, rigid wall, small strain, small pressure gradient). In this paper, experimental data for artery mechanical properties under physiological conditions were measured and a 3-d computational model is introduced to investigate flow behaviors and wall stress and strain distributions with fluid-structure interactions to better understand the mechanism involved in artery compression and plaque cap rupture.


2021 ◽  
Vol 16 (12) ◽  
pp. P12042
Author(s):  
A.A. Savchenko ◽  
W. Wagner

Abstract We present a new C++ module for simulation of channeling radiation to be implemented in Geant4 as a discrete physical process. The module allows simulation of channeling radiation from relativistic electrons and positrons with energies above 100 MeV for various types of single crystals. In this paper, we simulate planar channeling radiation applying the classical approach in the dipole approximation as a first attempt not yet considering other contributory processes. Simulation results are proved to be in a rather good agreement with experimental data.


1969 ◽  
Vol 24 (6) ◽  
pp. 922-929 ◽  
Author(s):  
W. Neubert ◽  
W. Neubert

Abstract Magnetoresistance measurements of Copper and Silver single crystals in weak magnetic fields at 4.2 K are reported. In addition, the magnetosresistance has been calculated. The model used is based on ROAF's analytical representation of the Fermi surface. In view of the simplifying as­ sumptions made about bandstructure and scattering mechanism, the experimental data are found to agree reasonably well with the results of the numerical calculations.


Sign in / Sign up

Export Citation Format

Share Document