Effect of rebar corrosion in concrete on interaction zone under tensile load

Author(s):  
A. Kunawisarut ◽  
M. Iwanami ◽  
N. Chijiwa ◽  
K. Nakayama
2011 ◽  
Vol 243-249 ◽  
pp. 5694-5698
Author(s):  
Xin Hua Cai ◽  
Zhen He ◽  
Shi Lang Xu

Ultra high toughness cementitious composite (UHTCC) shows a unique characteristic of limit the crack width with multiple fine cracks whether it is subjected to tensile load or bending load. The failure pattern of UHTCC exhibits saturated multiple fine cracks, so the durability of structures will be improved markedly by utilizing UHTCC partly or entirely instead of concrete. In this study, considering the tensile strain capacity of UHTCC, a formula for calculating the critical rebar corrosion ratio when the UHTCC cover cracking due to rebar corrosion through the theory of plasticity and cylindrical cavity expansion theory. The effectiveness of UHTCC for restraining the cover cracking due to rebar corrosion has been proved by a calculated example. The influences on critical rebar corrosion when the UHTCC cover cracking due to rebar corrosion have been analyzed. The analytical results showed that UHTCC could effectively retard the cover expansive cracking due to corrosion of reinforcing bars, and prolong the service life of concrete structures subjected to the environment being at risk of corrosion.


1992 ◽  
Vol 05 (03) ◽  
pp. 100-103 ◽  
Author(s):  
G. Jean ◽  
J. K. Roush ◽  
R. M. DeBowes ◽  
E. M. Gaughan ◽  
J. Kirpensteijn

SummaryThe holding power and holding power per mm bone width of 4.5 mm and 5.5 mm cortical and 6.5 mm cancellous orthopaedic screws were obtained by tensile load-to-failure studies in excised metacarpal and metatarsal bones of young female Holstein calves. Holding power and holding power per mm bone width of 6.5 mm orthopaedic screws were significantly greater than those of 4.5 and 5.5 mm orthopaedic screws in the diaphysis and metaphysis. Significant differences were not detected between holding power and holding power per mm bone width of 4.5 and 5.5 mm orthopaedic screws. The holding power was not different between metacarpi and metatarsi. The limiting factor in all tests of holding power was the shear strength of the bone. We found that 6.5 mm orthopaedic screws have the greatest holding power in the metacarpal and metatarsal bones of young calves.This study compares the holding power of 4.5 mm and 5.5 mm cortical and 6.5 mm cancellous orthopaedic screws in excised metacarpal and metatarsal bones from young female Holstein calves. We found that 6.5 mm orthopaedic screws have the greatest holding power.


2020 ◽  
Vol 13 ◽  
Author(s):  
V. Arumugaprabu ◽  
K.Arun Prasath ◽  
S. Mangaleswaran ◽  
M. Manikanda Raja ◽  
R. Jegan

: The objective of this research is to evaluate the tensile, impact and flexural properties of flax fiber and basalt powder filled polyester composite. Flax fiber is one of the predominant reinforcement natural fiber which possess good mechanical properties and addition of basalt powder as a filler provides additional support to the composite. The Composites are prepared using flax fiber arranged in 10 layers with varying weight percentage of the basalt powder as 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.% and 30 wt.% respectively. From the results it is inferred that the composite combination 10 Layers of flax / 5 wt.%, basalt Powder absorbs more tensile load of 145 MPa. Also, for the same combination maximum flexural strength is about 60 MPa. Interestingly in the case of impact strength more energy was absorbed by 10 layers of flax and 30 wt.% of basalt powder. In addition, the failure mechanism of the composites also discussed briefly using SEM studies.


2021 ◽  
Vol 11 (15) ◽  
pp. 6772
Author(s):  
Charlotte Van Steen ◽  
Els Verstrynge

Corrosion of the reinforcement is a major degradation mechanism affecting durability and safety of reinforced concrete (RC) structures. As the corrosion process starts internally, it can take years before visual damage can be noticed on the surface, resulting in an overall degraded condition and leading to large financial costs for maintenance and repair. The acoustic emission (AE) technique enables the continuous monitoring of the progress of internal cracking in a non-invasive way. However, as RC is a heterogeneous material, reliable damage detection and localization remains challenging. This paper presents extensive experimental research aiming at localizing internal damage in RC during the corrosion process. Results of corrosion damage monitoring with AE are presented and validated on three sample scales: small mortar samples (scale 1), RC prisms (scale 2), and RC beams (scale 3). For each scale, the corrosion process was accelerated by imposing a direct current. It is found that the AE technique can detect damage earlier than visual inspection. However, dedicated filtering is necessary to reliably localize AE events. Therefore, AE signals were filtered by a newly developed post-processing protocol which significantly improves the localization results. On the smallest scale, results were confirmed with 3D micro-CT imaging, whereas on scales 2 and 3, results were compared with surface crack width measurements and resulting rebar corrosion levels.


Author(s):  
Johanna Schultes ◽  
Michael Stiglmayr ◽  
Kathrin Klamroth ◽  
Camilla Hahn

AbstractIn engineering applications one often has to trade-off among several objectives as, for example, the mechanical stability of a component, its efficiency, its weight and its cost. We consider a biobjective shape optimization problem maximizing the mechanical stability of a ceramic component under tensile load while minimizing its volume. Stability is thereby modeled using a Weibull-type formulation of the probability of failure under external loads. The PDE formulation of the mechanical state equation is discretized by a finite element method on a regular grid. To solve the discretized biobjective shape optimization problem we suggest a hypervolume scalarization, with which also unsupported efficient solutions can be determined without adding constraints to the problem formulation. FurthIn this section, general properties of the hypervolumeermore, maximizing the dominated hypervolume supports the decision maker in identifying compromise solutions. We investigate the relation of the hypervolume scalarization to the weighted sum scalarization and to direct multiobjective descent methods. Since gradient information can be efficiently obtained by solving the adjoint equation, the scalarized problem can be solved by a gradient ascent algorithm. We evaluate our approach on a 2 D test case representing a straight joint under tensile load.


Author(s):  
A. Hammad ◽  
T. D. Swinburne ◽  
H. Hasan ◽  
S. Del Rosso ◽  
L. Iannucci ◽  
...  

Solitons are proposed as the agents of plastic and viscoelastic deformation in aligned polyethylene. Interactions between straight, parallel molecules are mapped rigorously onto the Frenkel–Kontorova model. It is shown that these molecular interactions distribute an applied load between molecules, with a characteristic transfer length equal to the soliton width. Load transfer leads to the introduction of tensile and compressive solitons at the chain ends to mark the onset of plasticity at a well-defined yield stress, which is much less than the theoretical pull-out stress. Interaction energies between solitons and an equation of motion for solitons are derived. The equation of motion is based on Langevin dynamics and the fluctuation–dissipation theorem and it leads to the rigorous definition of an effective mass for solitons. It forms the basis of a soliton dynamics in direct analogy to dislocation dynamics. Close parallels are drawn between solitons in aligned polymers and dislocations in crystals, including the configurational force on a soliton. The origins of the strain rate and temperature dependencies of the viscoelastic behaviour are discussed in terms of the formation energy of solitons. A failure mechanism is proposed involving soliton condensation under a tensile load.


2021 ◽  
Vol 11 (14) ◽  
pp. 6550
Author(s):  
Doyun Jung ◽  
Wonjin Na

The failure behavior of composites under ultraviolet (UV) irradiation was investigated by acoustic emission (AE) testing and Ib-value analysis. AE signals were acquired from woven glass fiber/epoxy specimens tested under tensile load. Cracks initiated earlier in UV-irradiated specimens, with a higher crack growth rate in comparison to the pristine specimen. In the UV-degraded specimen, a serrated fracture surface appeared due to surface hardening and damaged interfaces. All specimens displayed a linearly decreasing trend in Ib-values with an increasing irradiation time, reaching the same value at final failure even when the starting values were different.


Sign in / Sign up

Export Citation Format

Share Document