Autonomous observing systems in fishing vessels

Author(s):  
A.M.P. Piecho-Santos ◽  
M.A. Hinostroza ◽  
T. Rosa ◽  
C. Guedes Soares
2018 ◽  
Vol 1 (2) ◽  
pp. 25-32
Author(s):  
Galamda Israk ◽  
Slamet Widodo ◽  
Andy Alfatih

ABSTRACT This study aims to determine the quality of service issuance of Proof of Registration of Fishing Vessels (BPKP) in the Department of Maritime Affairs and Fisheries of South Sumatra Province and what factors influence it. Data collection techniques used were the distribution of questionnaires to 60 respondents who were capture fisheries business actors with a Likert Scale assessment, as well as conducting unstructured interviews, non-participant observation and secondary data collection. The dimensions used are tangible, reliability, responsiveness, assurance and empathy. The value of service quality based on tangible dimensions is 4.2 or good, based on the reliability dimension is 4.1 or good, the responsiveness dimension is 4.0 or good, the guarantee dimension is 4.1 or good, and based on the empathy dimension is 4.1 or good. Of all these parameters, it was concluded that the quality of BPKP issuance services in the Department of Maritime Affairs and Fisheries of South Sumatra Province in 2016 was good with a score of 4.1. The conclusion is based on an assessment of an average of 58 respondents or 97.4% of respondents.


2021 ◽  
Vol 13 (11) ◽  
pp. 5858
Author(s):  
Kyumin Kim ◽  
Do-Hoon Kim ◽  
Yeonghye Kim

Recent studies demonstrate that fisheries are massive contributors to global greenhouse gas (GHG) emissions. The average Korean fishing vessel is old, fuel-inefficient, and creates a large volume of emissions. Yet, there is little research on how to address the GHG emissions in Korean fisheries. This study estimated the change in GHG emissions and emission costs at different levels of fishing operations using a steady-state bioeconomic model based on the case of the Anchovy Tow Net Fishery (ATNF) and the Large Purse Seine Fishery (LPSF). We conclude that reducing the fishing efforts of the ATNF and LPSF by 37% and 8% respectively would not only eliminate negative externalities on the anchovy and mackerel stock respectively, but also mitigate emissions and emission costs in the fishing industry. To limit emissions, we propose that the Korean government reduce fishing efforts through a vessel-buyback program and set an annual catch limit. Alternatively, the government should provide loans for modernizing old fishing vessels or a subsidy for installing emission abatement equipment to reduce the excessive emissions from Korean fisheries.


2021 ◽  
Vol 238 ◽  
pp. 105896
Author(s):  
Timothy H. Frawley ◽  
Hannah E. Blondin ◽  
Timothy D. White ◽  
Rachel R. Carlson ◽  
Brianna Villalon ◽  
...  

Author(s):  
Febus Reidj G. Cruz ◽  
Jeremiah A. Ordiales ◽  
Malvin Angelo C. Reyes ◽  
Pinky T. Salvanera

2021 ◽  
Vol 9 (7) ◽  
pp. 702
Author(s):  
Hüseyin Özkan Sertlek

The national measures in several European countries during the COVID-19 pandemic also affected offshore human activities, including shipping. In this work, the temporal and spatial variations of shipping sound are calculated for the years before and during the pandemic in selected shallow water test areas from the Southern North Sea and the Adriatic Sea. First, the monthly sound pressure level maps of ships and wind between 2017 and 2020 are calculated for frequencies between 100 Hz to 10 kHz. Next, the monthly changes in these maps are compared. The asymptotic approximation of the hybrid flux-mode propagation model reduces the computational requirements for sound mapping simulations and facilitates the production of a large number of sound maps for different months, depths, frequencies, and ship categories. After the strictest COVID-19 measures were applied in April 2020, the largest decline was observed for the fishing, passenger and recreational ships. Although the changes in the number of fishing vessels are large, their contribution to the soundscape is minor due to their low source level. In both test areas, the spatial exceedance levels and acoustic energies were decreased in 2020 compared to the average of the previous three years.


2021 ◽  
Vol 10 (5) ◽  
pp. 277
Author(s):  
Xiaoen Li ◽  
Yang Xiao ◽  
Fenzhen Su ◽  
Wenzhou Wu ◽  
Liang Zhou

For the sustainable development of marine fishery resources, it is essential to comprehensively, accurately, and objectively obtain the spatial characteristics and evolution law of fishing intensity. However, previous studies have focused more on the use of single data sources, such as AIS (Automatic Information System) and VBD (VIIRS boat detection), to obtain fishing intensity information and, as such, have encountered some problems, such as insufficient comprehensive data coverage for ships, non-uniform spatial distribution of data signal acquisition, and insufficient accuracy in obtaining fishing intensity information. The development of big data and remote sensing Earth observation technology has provided abundant data sources and technical support for the acquisition of fishing intensity data for marine fisheries. Based on this situation, this paper proposes a framework that integrates the data of fishing vessels from two sources (AIS, with high space-time granularity, and VBD, with short revisit cycle and high sensitivity), in order to obtain such information based on closely matching and fusing the vector point data of ship positions. With the help of this framework and the strategy of indirectly representing fishing intensity by data point density after fusion, the spatial characteristics and rules of fishing intensity in typical seasons (February, April, September, and November) in the northern South China Sea in 2018 were systematically analyzed and investigated. The results revealed the following: (1) Matching and fusing AIS and VBD data can provide a better perspective to produce robust and accurate marine fishery intensity data. The two types of data have a low proximity match rate (approximately 1.89% and 6.73% of their respective inputs) and the matching success for fishing vessels in the data was 49.42%. (2) Single AIS data can be used for nearshore (50 to 70 km) marine fishery analysis research, while VBD data reflect the objective marine fishing in space, showing obvious complementarity with AIS. (3) The fishing intensity grid data obtained from the integrated data show that high-intensity fishing in the study area was concentrated in the coastal area of Maoming City, Guangdong (0–50 km); the coastal area of Guangxi Beihai (10–70 km); around Hainan Island in Zhangzhou (10–30 km); and the Sanya nearshore area (0–50 km). However, it did not decay with increasing offshore distance, such as at the Trans-Vietnamese boundary in the Beibu Gulf, near the China–Vietnam Common Fisheries Area (50 km) and high-intensity fishing areas. (4) The obtained fishing intensity data (AIS, VBD, and AIS + VBD) were quantitatively analyzed, showing that the CV (Coefficient of Variation) of the average for each month (after fusing the two types of data) was 0.995, indicating that the distribution of the combined data was better than that before fusion (before fusion: AIS = 0.879, VBD = 1.642). Therefore, the integration of AIS and VBD can meet the need for a more effective, comprehensive, and accurate fishing intensity analysis in marine fishery resources.


2021 ◽  
Vol 7 (9) ◽  
pp. eabe3470
Author(s):  
Jorge P. Rodríguez ◽  
Juan Fernández-Gracia ◽  
Carlos M. Duarte ◽  
Xabier Irigoien ◽  
Víctor M. Eguíluz

Fisheries in waters beyond national jurisdiction (“high seas”) are difficult to monitor and manage. Their regulation for sustainability requires critical information on how fishing effort is distributed across fishing and landing areas, including possible border effects at the exclusive economic zone (EEZ) limits. We infer the global network linking harbors supporting fishing vessels to fishing areas in high seas from automatic identification system tracking data in 2014, observing a modular structure, with vessels departing from a given harbor fishing mostly in a single province. The top 16% of these harbors support 84% of fishing effort in high seas, with harbors in low- and middle-income countries ranked among the top supporters. Fishing effort concentrates along narrow strips attached to the boundaries of EEZs with productive fisheries, identifying a free-riding behavior that jeopardizes efforts by nations to sustainably manage their fisheries, perpetuating the tragedy of the commons affecting global fishery resources.


2019 ◽  
Vol 95 (3) ◽  
pp. 355-369 ◽  
Author(s):  
Kurt M Schaefer ◽  
Daniel W Fuller ◽  
Alexandre Aires-da-Silva ◽  
Jose M Carvajal ◽  
Jimmy Martínez-Ortiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document