scholarly journals Research on government supervision mechanism for resource utilization of construction and demolition waste based on evolutionary game

2021 ◽  
pp. 377-382
Author(s):  
D.D. Liu ◽  
L. Qiao
2021 ◽  
pp. 0734242X2110320
Author(s):  
Chenyu Liu ◽  
Chunxiang Hua ◽  
Jianguo Chen

While the construction industry has brought substantial economic benefits to society, it has also generated substantial construction and demolition waste (CDW). Illegal dumping, which refers to dumping CDW in an unauthorized non-filling location, has become widespread in many countries and regions. Illegally dumping CDW destroys the environment, causing groundwater pollution and forest fires and causing significant economic impacts. However, there is a lack of research on the decision-making behaviours and logical rules of the main participants, construction contractors and the government in the illegal CDW dumping process. This paper constructs an evolutionary game model on a small-world network considering government supervision to portray the decision-making behaviours of illegal dumping participants and conducts a numerical simulation based on empirical equations to propose an effective supervision strategy for the government to manage illegal CDW dumping efficiently. It is found that the illegal dumping behaviours of contractors are mainly affected by the intensity of government supervision, the cost of fines and the income of illegal dumping; while for government, a supervision strategy is found to be necessary, and a supervision intensity of approximately 0.7 is the optimal supervision probability given supervision efficiency. Notably, under a low-level supervision probability, increasing the penalty alone does not curb illegal dumping, and a certain degree of supervision must be maintained. The results show that in addition to setting fines for illegal dumping, the government must enforce a certain level of supervision and purify the market environment to steadily reduce illegal dumping.


Author(s):  
Xingwei Li ◽  
Ruonan Huang ◽  
Jiachi Dai ◽  
Jingru Li ◽  
Qiong Shen

At present, China has not yet formed an effective development model for the industrialization of construction waste. The level of construction waste treatment and resource utilization is still low, and recycled products also lack market competitiveness. In order to promote the effective development of the remanufactured construction and demolition waste supply chain better, and based on the present situation, this manuscript establishes a game model for recycling units in two different situations: with and without remanufacturing capabilities. However, most existing studies have determined that all recycling units have remanufacturing capabilities. In the first situation, the main players of the game are recycling units with remanufacturing capabilities and consumers. In the second situation, the main players of the game are recycling units without remanufacturing capabilities and the third-party remanufacturer with remanufacturing ability. Therefore, our research can ascertain the optimal strategy choices of both parties in the game under different return situations and discuss the impact of changes to related parameters through numerical simulations. The results show: (1) When the recycling unit has remanufacturing capabilities, corporate leadership and government supervision rate have positive effects on its evolution to strict manufacturing. Only a high supervision rate can effectively suppress the negative impact of speculative gains and drive the system to (strict manufacturing; positive). Furthermore, the higher the supervision rate, the faster the system will converge. Then, the consumer’s payment difference coefficient has a negative effect on the evolution of the recycling unit to strict manufacturing. The larger the payment difference coefficient, the faster the system will converge to a stable state (tendency to formal manufacturing; negative). (2) When the recycling unit does not have the ability to remanufacture, the government cost subsidy rate and the recycling unit’s effort profit coefficient have positive effects on the recycling unit’s evolution to the direction of effort. Meanwhile, the larger the profit coefficient of the recovery unit’s effort, the faster the system will converge. The conclusions obtained provide certain theoretical guidance for the decision making of CDW recycling supply chain recovery units and relevant government departments.


Author(s):  
Hongyu Long ◽  
Hongyong Liu ◽  
Xingwei Li ◽  
Longjun Chen

The low efficiency of the closed-loop supply chain in construction and demolition waste (CDW) recycling has restricted the green development of China’s construction industry. Additionally, the government’s reward–penalty mechanism has a huge influence on green development. This study aimed to investigate the effect of green development performance (GDP) and the government’s reward–penalty mechanism on the decision-making process of production and recycling units, as well as to reveal the optimal strategies under different conditions. Therefore, the strategies’ evolutionary paths of production and recycling units were investigated by using evolutionary game theory. Firstly, an evolutionary game model between production units and recycling units was proposed under the government’s reward–penalty mechanism. Then, the evolutionary stability strategies in different scenarios were discussed. Finally, the effects of the relevant parameters on the evolutionary paths of the game model were analyzed using numerical simulations. The main conclusions are as follows. (1) When the range of GDP changes, the evolutionary stable strategy changes accordingly. GDP plays a positive role in promoting the high-quality development of the CDW recycling supply chain, but an increase in GDP can easily lead to the simultaneous motivation of free-riding. (2) The government’s reward–penalty mechanism effectively regulates the decision-making process of production and recycling units. An increase in the subsidy rate and supervision probability helps to reduce free-riding behavior. Moreover, the incentive effect of the subsidy probability on recycling units is more obvious, while the effect of the supervision probability on improving the motivation of active participation for production units is more remarkable. This paper not only provides a decision-making basis to ensure production and recycling units to make optimal strategy choices under different conditions but also provides a reference for the government to formulate a reasonable reward–penalty mechanism that is conducive to a macro-control market.


2019 ◽  
Author(s):  
A.P.K.D. Mendis ◽  
◽  
A. Samaraweera ◽  
D.M.G.B.T. Kumarasiri ◽  
D. Rajini ◽  
...  

2020 ◽  
Vol 6 (9) ◽  
pp. 73169-73180
Author(s):  
Kelly Patrícia Torres Vieira Brasileiro ◽  
Bacus de Oliveira Nahime ◽  
Michell Macedo Alves ◽  
Pâmela Millena Kunan ◽  
Vitor Alvares ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2247
Author(s):  
Fernando da Silva Souza ◽  
José Maria Franco de Carvalho ◽  
Gabriela Grotti Silveira ◽  
Vitória Cordeiro Araújo ◽  
Ricardo André Fiorotti Peixoto

The lack of usable aggregates for civil construction in Rio Branco (capital of Acre, a Federal State in the Amazon region) makes the production and use of recycled aggregates from construction and demolition waste (CDW) an alternative of great interest. In this study, a comprehensive characterization of CDW collected from 24 construction sites of six building types and three different construction phases (structures, masonry, and finishing) was carried out. The fine and coarse recycled aggregates were produced and evaluated in 10 different compositions. The aggregates’ performance was evaluated in four mixtures designed for laying and coating mortars with a total replacement of conventional aggregates and a mixture designed for a C25 concrete with 50% and 100% replacement of conventional aggregates. CDW mortars showed lower densities and greater water retention, initial adhesion, and mechanical strength than conventional mortars. CDW concretes presented lower densities and greater resistance to chloride penetration than conventional concrete, with a small mechanical strength reduction. The recycled CDW aggregates proved to be technologically feasible for safe application in mortars and concrete; for this reason, it is believed that the alternative and proposed methodology is of great interest to the Amazonian construction industry, considering the high costs of raw materials and the need for defining and consolidating a sustainable development model for the Amazon region.


2021 ◽  
Vol 13 (15) ◽  
pp. 8427
Author(s):  
Bahareh Nikmehr ◽  
M. Reza Hosseini ◽  
Jun Wang ◽  
Nicholas Chileshe ◽  
Raufdeen Rameezdeen

This article provides a picture of the latest developments in providing BIM-based tools for construction and demolition waste (CDW) management. The coverage and breadth of the literature on offering BIM-based tools and technologies for dealing with CDW throughout the whole life cycle of construction are investigated, and gaps are identified. Findings reveal that, although various BIM-based technologies are closely associated with CDW, much of the existing research on this area has focused on the design and construction phase; indeed, the problem of CDW in post-construction stages has received scant attention. Besides, the now available tools and technologies are lacking in cross-phase insights into project waste aspects and are weak in theoretical rigor. This article contributes to the field by identifying the intellectual deficiencies in offering BIM-based tools and technologies when dealing with CDW. So, too, it points to major priorities for future research on the topic. For practitioners, the study provides a point of reference and raises awareness in the field about the most advanced available BIM-based technologies for dealing with CDW problems.


Sign in / Sign up

Export Citation Format

Share Document