Interference Microscopy Techniques for Microsystem Characterization

Author(s):  
Alain Bosseboeuf ◽  
Sylvain Petitgrand
2019 ◽  
pp. 261-295
Author(s):  
Alain Bosseboeuf ◽  
Philippe Coste ◽  
Sylvain Petitgrand

2018 ◽  
Author(s):  
Steve Simmert ◽  
Mohammad Kazem Abdosamadi ◽  
Gero Hermsdorf ◽  
Erik Schäffer

AbstractOptical tweezers combined with various microscopy techniques are a versatile tool for single-molecule force spectroscopy. However, some combinations may compromise measurements. Here, we combined optical tweezers with total-internal-reflection-fluorescence (TIRF) and interference-reflection microscopy (IRM). Using a light-emitting diode (LED) for IRM illumination, we show that single microtubules can be resolved with high contrast. Furthermore, we converted the IRM interference pattern of an upward bent microtubule to its three-dimensional (3D) profile calibrated against the optical tweezers and evanescent TIRF field. In general, LED-based IRM is a powerful method for high-resolution 3D microscopy.OCIS codes(180.3170) Interference microscopy; (120.4570) Optical design of instruments (350.4855); Optical tweezers or optical manipulation.


Author(s):  
R. I. Johnsson-Hegyeli ◽  
A. F. Hegyeli ◽  
D. K. Landstrom ◽  
W. C. Lane

Last year we reported on the use of reflected light interference microscopy (RLIM) for the direct color photography of the surfaces of living normal and malignant cell cultures without the use of replicas, fixatives, or stains. The surface topography of living cells was found to follow underlying cellular structures such as nuceloli, nuclear membranes, and cytoplasmic organelles, making possible the study of their three-dimensional relationships in time. The technique makes possible the direct examination of cells grown on opaque as well as transparent surfaces. The successful in situ electron microprobe analysis of the elemental composition and distribution within single tissue culture cells was also reported.This paper deals with the parallel and combined use of scanning electron microscopy (SEM) and the two previous techniques in a study of living and fixed cancer cells. All three studies can be carried out consecutively on the same experimental specimens without disturbing the cells or their structural relationships to each other and the surface on which they are grown. KB carcinoma cells were grown on glass coverslips in closed Leighto tubes as previously described. The cultures were photographed alive by means of RLIM, then fixed with a fixative modified from Sabatini, et al (1963).


Author(s):  
C.E. Voegele-Kliewer ◽  
A.D. McMaster ◽  
G.W. Dirks

Materials other than polymers, e.g. ceramic silicates, are currently being investigated for gas separation processes. The permeation characteristics of one such material, Vycor (Corning Glass #1370), have been reported for the separation of hydrogen from hydrogen iodide. This paper will describe the electron microscopy techniques applied to reveal the porous microstructure of a Vycor membrane. The application of these techniques has led to an increased understanding in the relationship between the substructure and the gas transport properties of this material.


Author(s):  
Thomas M. Moore

In the last decade, a variety of characterization techniques based on acoustic phenomena have come into widespread use. Characteristics of matter waves such as their ability to penetrate optically opaque solids and produce image contrast based on acoustic impedance differences have made these techniques attractive to semiconductor and integrated circuit (IC) packaging researchers.These techniques can be divided into two groups. The first group includes techniques primarily applied to IC package inspection which take advantage of the ability of ultrasound to penetrate deeply and nondestructively through optically opaque solids. C-mode Acoustic Microscopy (C-AM) is a recently developed hybrid technique which combines the narrow-band pulse-echo piezotransducers of conventional C-scan recording with the precision scanning and sophisticated signal analysis capabilities normally associated with the high frequency Scanning Acoustic Microscope (SAM). A single piezotransducer is scanned over the sample and both transmits acoustic pulses into the sample and receives acoustic echo signals from the sample.


Author(s):  
M. S. Bischel ◽  
J. M. Schultz

Despite its rapidly growing use in commercial applications, the morphology of LLDPE and its blends has not been thoroughly studied by microscopy techniques. As part of a study to examine the morphology of a LLDPE narrow fraction and its blends with HDPE via SEM, TEM and AFM, an appropriate etchant is required. However, no satisfactory recipes could be found in the literature. Mirabella used n-heptane, a solvent for LLDPE, as an etchant to reveal certain morphological features in the SEM, including faint banding in spherulites. A 1992 paper by Bassett included a TEM micrograph of an axialite of LLDPE, etched in a potassium permanganate solution, but no details were given.Attempts to use n-heptane, at 60°C, as an etchant were unsuccessful: depending upon thickness, samples swelled and increased in diameter by 5-10% or more within 15 minutes. Attempts to use the standard 3.5% potassium permanganate solution for HDPE were also unsuccessful: the LLDPE was severely overetched. Weaker solutions were also too severe.


Author(s):  
Magdalena Sienkiewicz ◽  
Philippe Rousseille

Abstract This paper presents a case study on scan test reject in a mixed mode IC. It focuses on the smart use of combined mature FA techniques, such as Soft Defect Localization (SDL) and emission microscopy (EMMI), to localize a random scan test anomaly at the silicon bulk level.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Sign in / Sign up

Export Citation Format

Share Document