Case Study: Combined Dynamic Laser Stimulation and Static Emission Microscopy Techniques Applied to Scan Test Failure on Mixed Mode Device

Author(s):  
Magdalena Sienkiewicz ◽  
Philippe Rousseille

Abstract This paper presents a case study on scan test reject in a mixed mode IC. It focuses on the smart use of combined mature FA techniques, such as Soft Defect Localization (SDL) and emission microscopy (EMMI), to localize a random scan test anomaly at the silicon bulk level.

Author(s):  
Magdalena Sienkiewicz ◽  
Estelle Huynh ◽  
Alain Vidal

Abstract This paper presents a case study on reliability reject on a Freescale mixed-mode IC. It focuses on a novel use of one of most frequently used failure localization techniques: static emission microscopy (EMMI) to localize a failure due to an electrical transient behavior. This work helped Freescale to identify a wafer fab process limitation and contributed to test improvement.


Author(s):  
Kyeongju Jin ◽  
Sukho Lee ◽  
Keonil Kim ◽  
Yunwoo Lee ◽  
Yojoung Kim

Abstract In the case of conventional planar FET, Dynamic Laser Stimulation (DLS) is a very effective method to isolate marginal failure. Depending on laser sources, DLS is divided by Soft Defect Localization (SDL) and Laser Assisted Device Alteration (LADA). SDL uses 1320nm wavelength laser source in order to induce localized heat. On the other hand, LADA uses 1064nm wavelength laser source to generate photo carriers. But for the FinFET the effect of laser stimulation is not clear yet. This paper introduces the effect of laser stimulation on FinFET transistors based on wavelength, the so called LADA and two-photon LADA. The experimental data show changes in Vth and Idsat with different character for a single FinFET transistor. A case study further explains this laser stimulation effect via scan chain LVcc marginal failure analysis localized with 1320nm CW laser stimulation and nano-probing analysis.


Author(s):  
M. Lee ◽  
B.L. Yeoh ◽  
S.H. Goh ◽  
G.F. You ◽  
Alan Tan ◽  
...  

Abstract EeLADA has been introduced previously as a prospective alternative approach to DFT scan diagnosis for scan logic defect localization. It has the capability to reveal induced signals from laser stimulation that are relevant to the failure signature by comparing failing pins and cycles of the bad device. Multiple schemes involving different combinations for comparison are possible. Defect simulations based on cell fault injections on a multi-level logic of a real digital device circuit characterizes the different comparison schemes. The findings are used to devise an optimized methodology to determine suspected fail locations to guide physical failure analysis to reveal the defect. A successful case study substantiates the method.


Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


Author(s):  
Sarven Ipek ◽  
David Grosjean

Abstract The application of an individual failure analysis technique rarely provides the failure mechanism. More typically, the results of numerous techniques need to be combined and considered to locate and verify the correct failure mechanism. This paper describes a particular case in which different microscopy techniques (photon emission, laser signal injection, and current imaging) gave clues to the problem, which then needed to be combined with manual probing and a thorough understanding of the circuit to locate the defect. By combining probing of that circuit block with the mapping and emission results, the authors were able to understand the photon emission spots and the laser signal injection microscopy (LSIM) signatures to be effects of the defect. It also helped them narrow down the search for the defect so that LSIM on a small part of the circuit could lead to the actual defect.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


Author(s):  
Kevin Sanchez ◽  
Romain Desplats ◽  
Philippe Perdu ◽  
Felix Beaudoin ◽  
Sylvain Dudit ◽  
...  

Abstract In this paper we report on the application field of Dynamic Laser Stimulation (DLS) techniques to Integrated Circuit (IC) analysis. The effects of thermal and photoelectric laser stimulation on ICs are presented. Implementations, practical considerations and applications are presented for techniques based on functional tests like Soft Defect Localization (SDL) and Laser Assisted Device Alteration (LADA). A new methodology, Delay Variation Mapping (DVM), will also be presented and discussed.


Author(s):  
S.-S. Lee ◽  
J.-S. Seo ◽  
N.-S. Cho ◽  
S. Daniel

Abstract Both photo- and thermal emission analysis techniques are used from the backside of the die colocate defect sites. The technique is important in that process and package technologies have made front-side analysis difficult or impossible. Several test cases are documented. Intensity attenuation through the bulk of the silicon does not compromise the usefulness of the technique in most cases.


Sign in / Sign up

Export Citation Format

Share Document