Fracture optimization of RC beams strengthened with CFRP laminates with finite element and experimental methods

Author(s):  
A Gharachorlou ◽  
A Ramezanianpour
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2809
Author(s):  
Md. Akter Hosen ◽  
Fadi Althoey ◽  
Mohd Zamin Jumaat ◽  
U. Johnson Alengaram ◽  
N. H. Ramli Sulong

Reinforced concrete (RC) structures necessitate strengthening for various reasons. These include ageing, deterioration of materials due to environmental effects, trivial initial design and construction, deficiency of maintenance, the advancement of design loads, and functional changes. RC structures strengthening with the carbon fiber reinforced polymer (CFRP) has been used extensively during the last few decades due to their advantages over steel reinforcement. This paper introduces an experimental approach for flexural strengthening of RC beams with Externally-Side Bonded Reinforcement (E-SBR) using CFRP fabrics. The experimental program comprises eight full-scale RC beams tested under a four-point flexural test up to failure. The parameters investigated include the main tensile steel reinforcing ratio and the width of CFRP fabrics. The experimental outcomes show that an increase in the tensile reinforcement ratio and width of the CFRP laminates enhanced the first cracking and ultimate load-bearing capacities of the strengthened beams up to 141 and 174%, respectively, compared to the control beam. The strengthened RC beams exhibited superior energy absorption capacity, stiffness, and ductile response. The comparison of the experimental and predicted values shows that these two are in good agreement.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 506 ◽  
Author(s):  
Alexandre Mathern ◽  
Jincheng Yang

Nonlinear finite element (FE) analysis of reinforced concrete (RC) structures is characterized by numerous modeling options and input parameters. To accurately model the nonlinear RC behavior involving concrete cracking in tension and crushing in compression, practitioners make different choices regarding the critical modeling issues, e.g., defining the concrete constitutive relations, assigning the bond between the concrete and the steel reinforcement, and solving problems related to convergence difficulties and mesh sensitivities. Thus, it is imperative to review the common modeling choices critically and develop a robust modeling strategy with consistency, reliability, and comparability. This paper proposes a modeling strategy and practical recommendations for the nonlinear FE analysis of RC structures based on parametric studies of critical modeling choices. The proposed modeling strategy aims at providing reliable predictions of flexural responses of RC members with a focus on concrete cracking behavior and crushing failure, which serve as the foundation for more complex modeling cases, e.g., RC beams bonded with fiber reinforced polymer (FRP) laminates. Additionally, herein, the implementation procedure for the proposed modeling strategy is comprehensively described with a focus on the critical modeling issues for RC structures. The proposed strategy is demonstrated through FE analyses of RC beams tested in four-point bending—one RC beam as reference and one beam externally bonded with a carbon-FRP (CFRP) laminate in its soffit. The simulated results agree well with experimental measurements regarding load-deformation relationship, cracking, flexural failure due to concrete crushing, and CFRP debonding initiated by intermediate cracks. The modeling strategy and recommendations presented herein are applicable to the nonlinear FE analysis of RC structures in general.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Long Liu ◽  
Lifeng Wang ◽  
Ziwang Xiao

PurposeReinforcement of reinforced concrete (RC) beams in-service have always been an important research field, anchoring steel plate in the bottom of the beams is a kind of common reinforcement methods. In actual engineering, the contribution of pavement layer to the bearing capacity of RC beams is often ignored, which underestimates the bearing capacity and stiffness of RC beams to a certain extent. The purpose of this paper is to study the effect of pavement layer on the RC beams before and after reinforcement.Design/methodology/approachFirst, static load experiments are carried out on three in-service RC hollow slab beams, meanwhile, nonlinear finite element models are built to study the bearing capacity of them. The nonlinear material and shear slip effect of studs are considered in the models. Second, the finite element models are verified, and the numerical simulation results are in good agreement with the experimental results. Last, the finite element models are adopted to carry out the research on the influence of different steel plate thicknesses on the flexural bearing capacity and ductility.FindingsThe experimental results showed that pavement layers increase the flexural capacity of hollow slab beams by 16.7%, and contribute to increasing stiffness. Ductility ratio of SPRCB3 and PRCB2 was 30% and 24% lower than that of RCB1, respectively. The results showed that when the steel plate thickness was 1 mm–6 mm, the bearing capacity of the hollow slab beam increased gradually from 2158.0 kN.m to 2656.6 kN.m. As the steel plate thickness continuously increased to 8 mm, the ultimate bearing capacity increased to 2681.0 kN.m. The increased thickness did not cause difference to the bearing capacity, because of concrete crushing at the upper edge.Originality/valueIn this paper, based on the experimental study, the bearing capacity of hollow beam strengthened by steel plate with different thickness is extrapolated by finite element simulation, and its influence on ductility is discussed. This method not only guarantees the accuracy of the bearing capacity evaluation, but also does not require a large number of samples, and has certain economy. The research results provide a basis for the reinforcement design of similar bridges.


2021 ◽  
Author(s):  
Maryam H. Naser ◽  
Mayadah W. Falah ◽  
Alaa Adnan Hafedh ◽  
Fatimah H. Naser

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ning Zhuang ◽  
Honghan Dong ◽  
Da Chen ◽  
Yeming Ma

This paper presents results from experiments on aged and seriously damaged reinforced concrete (RC) beams strengthened with different arrangements of external carbon fiber-reinforced polymer (CFRP) laminates and end anchorages. Seven RC beams from an old bridge, measuring 250 × 200 × 2300 mm, were tested. All specimens were loaded to yield load to evaluate initial mechanical properties. Then, these seriously damaged specimens were repaired using different CFRP-reinforcing schemes and reloaded to failure. The yield load growth due to CFRP reinforcement ranged from 5% to 36%. Different parameters including CFRP dimension and position, bonding length, and end anchorage were investigated and facilitated conclusions on beam ductility, load-midspan deflection response, and failure mode. This research contributes to knowledge about the CFRP repair of aged and seriously damaged beams to ensure better performance in overloaded conditions.


2021 ◽  
Vol 309 ◽  
pp. 01214
Author(s):  
M.V.N Mohan ◽  
Ramesh Bhagat Atul ◽  
Vijay Kumar Dwivedi

Carbon/Carbon composites finds its applications in several high temperature applications in the field of Space, Aviation etc. Designing of components or sub systems with carbon/carbon composites is a challenging task. It requires prediction of elastic properties with a very high accuracy. The prediction can be normally done by analytical, numerical or experimental methods. At the design stage the designers resort to numerical predictions as the experimental methods are not feasible during design stage. Analytical methods are complex and difficult to implement. The designers use numerical methods for prediction of elastic properties using Finite Element Modeling (FEM). The spatial distribution of fibers in matrix has an effect on results of prediction of elastic constants. The generation of random spatial distribution of fibers in representative volume element (RVE) challenging. The present work is aimed at study of effect of spatial distribution of fiber in numerical prediction of elastic properties of unidirectional carbon/carbon composites. MATLAB algorithm is used to generate the spatial distribution of fibers in unidirectional carbon/carbon composites. The RVE elements with various random fiber distributions are modeled using numerical Finite element Model using ABAQUS with EasyPBC plugin. The predicted elastic properties have shown significant variation to uniformly distributed fibers.


Sign in / Sign up

Export Citation Format

Share Document