Non-covalent Binding of Lycopene and Lycophyll

Lycopene ◽  
2009 ◽  
pp. 65-81
Author(s):  
Zsolt Bikadi ◽  
Peter Hari ◽  
Eszter Hazai ◽  
Samuel Lockwood ◽  
Ferenc Zsila
Keyword(s):  
Author(s):  
Wm. J. Arnold ◽  
J. Russo ◽  
H. D. Soule ◽  
M. A. Rich

Our studies of mammary tumor virus have included the application of the unlabeled antibody enzyme method of Sternberger to mammary tumor derived mouse cells in culture and observation with an electron microscope. The method avoids the extravagance of covalent binding of indicator molecules (horseradish peroxidase) with precious antibody locator molecules by relying instead upon specific antibody-antigen linkages. Our reagents included: Primary Antibody, rabbit anti-murine mammary tumor virus (MuMTV) which was antiserum 113 AV-2; Secondary Antibody, goat anti-rabbit IgG gamma chain (Cappel Laboratories); andthe Indicator, rabbit anti-horseradish peroxidase - horseradish peroxidase complex (PAP) (Cappel Labs.). Dilutions and washes were made in 0.05 M Tris 0.15 M saline buffered to pH 7.4. Cell monolayers, after light fixation in glutaraldehyde, were incubated in place by a protocol adapted from Sternberger and Graham and Karnovsky, then embedded by our usual method for monolayers. Reagents were confined to specific areas by neoprene 0-rings (Parker Seal Co.) reducing the amount of reagent needed to 50 microliters, 1/6th of that required to wet a 35 mm petri dish.


2019 ◽  
Vol 64 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Elias S.J. Arnér

Abstract Selenocysteine (Sec), the sulfur-to-selenium substituted variant of cysteine (Cys), is the defining entity of selenoproteins. These are naturally expressed in many diverse organisms and constitute a unique class of proteins. As a result of the physicochemical characteristics of selenium when compared with sulfur, Sec is typically more reactive than Cys while participating in similar reactions, and there are also some qualitative differences in the reactivities between the two amino acids. This minireview discusses the types of modifications of Sec in selenoproteins that have thus far been experimentally validated. These modifications include direct covalent binding through the Se atom of Sec to other chalcogen atoms (S, O and Se) as present in redox active molecular motifs, derivatization of Sec via the direct covalent binding to non-chalcogen elements (Ni, Mb, N, Au and C), and the loss of Se from Sec resulting in formation of dehydroalanine. To understand the nature of these Sec modifications is crucial for an understanding of selenoprotein reactivities in biological, physiological and pathophysiological contexts.


2018 ◽  
Author(s):  
Jiajun Wang ◽  
Jayesh Arun Bafna ◽  
Satya Prathyusha Bhamidimarri ◽  
Mathias Winterhalter

Biological channels facilitate the exchange of small molecules across membranes, but surprisingly there is a lack of general tools for the identification and quantification of transport (i.e., translocation and binding). Analyzing the ion current fluctuation of a typical channel with its constriction region in the middle does not allow a direct conclusion on successful transport. For this, we created an additional barrier acting as a molecular counter at the exit of the channel. To identify permeation, we mainly read the molecule residence time in the channel lumen as the indicator whether the molecule reached the exit of the channel. As an example, here we use the well-studied porin, OmpF, an outer membrane channel from <i>E. coli</i>. Inspection of the channel structure suggests that aspartic acid at position 181 is located below the constriction region (CR) and we subsequently mutated this residue to cysteine, where else cysteine free and functionalized it by covalent binding with 2-sulfonatoethyl methanethiosulfonate (MTSES) or the larger glutathione (GLT) blockers. Using the dwell time as the signal for transport, we found that both mono-arginine and tri-arginine permeation process is prolonged by 20% and 50% respectively through OmpF<sub>E181C</sub>MTSES, while the larger sized blocker modification OmpF<sub>E181C</sub>GLT drastically decreased the permeation of mono-arginine by 9-fold and even blocked the pathway of the tri-arginine. In case of the hepta-arginine as substrate, both chemical modifications led to an identical ‘blocked’ pattern observed by the dwell time of ion current fluctuation of the OmpF<sub>wt</sub>. As an instance for antibiotic permeation, we analyzed norfloxacin, a fluoroquinolone antimicrobial agent. The modulation of the interaction dwell time suggests possible successful permeation of norfloxacin across OmpF<sub>wt</sub>. This approach may discriminate blockages from translocation events for a wide range of substrates. A potential application could be screening for scaffolds to improve the permeability of antibiotics.


2020 ◽  
Vol 21 (9) ◽  
pp. 846-859
Author(s):  
Mohd Saeed ◽  
Mohd Adnan Kausar ◽  
Rajeev Singh ◽  
Arif J. Siddiqui ◽  
Asma Akhter

Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body’s anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer’s disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.


2020 ◽  
Vol 20 (23) ◽  
pp. 2106-2117
Author(s):  
Martin Krátký ◽  
Šárka Štěpánková ◽  
Michaela Brablíková ◽  
Katarína Svrčková ◽  
Markéta Švarcová ◽  
...  

Background: Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias’ treatment. Objective: Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors. Methods: Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman’s method. We calculated also physicochemical and structural parameters for CNS delivery. Results: The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes. Conclusion: Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 537
Author(s):  
Tarana Arman ◽  
John D. Clarke

Microcystins are ubiquitous toxins produced by photoautotrophic cyanobacteria. Human exposures to microcystins occur through the consumption of contaminated drinking water, fish and shellfish, vegetables, and algal dietary supplements and through recreational activities. Microcystin-leucine-arginine (MCLR) is the prototypical microcystin because it is reported to be the most common and toxic variant and is the only microcystin with an established tolerable daily intake of 0.04 µg/kg. Microcystin toxicokinetics is characterized by low intestinal absorption, rapid and specific distribution to the liver, moderate metabolism to glutathione and cysteinyl conjugates, and low urinary and fecal excretion. Molecular toxicology involves covalent binding to and inhibition of protein phosphatases, oxidative stress, cell death (autophagy, apoptosis, necrosis), and cytoskeleton disruption. These molecular and cellular effects are interconnected and are commonly observed together. The main target organs for microcystin toxicity are the intestine, liver, and kidney. Preclinical data indicate microcystins may also have nervous, pulmonary, cardiac, and reproductive system toxicities. Recent evidence suggests that exposure to other hepatotoxic insults could potentiate microcystin toxicity and increase the risk for chronic diseases. This review summarizes the current knowledge for microcystin toxicokinetics, molecular toxicology, and pathophysiology in preclinical rodent models and humans. More research is needed to better understand human toxicokinetics and how multifactorial exposures contribute to disease pathogenesis and progression.


1996 ◽  
Vol 24 (4) ◽  
pp. 603-608
Author(s):  
Moreno Paolini ◽  
Laura Pozzetti ◽  
Renata Mesirca ◽  
Andrea Sapone ◽  
Paola Silingardi ◽  
...  

The use of sodium phenobarbital (PB, CYP2B1 inducer) combined with β-naphthoflavone (β-NF, 1A1) to induce certain Phase I reactions in S9 liver fractions is a standard method for conducting short-term bioassays for genotoxicity. However, because post-oxidative enzymes are also able to activate many precarcinogens, we tested the possibility of adapting S9 liver fractions derived from Phase II-induced rodents to the field of genetic toxicology. In this study, S9 liver fractions derived from Swiss albino CD1 mice fed 7.5g/kg 2-(3)-tert-butyl-4-hydroxyanisole (BHA; a monofunctional Phase II-inducer) for 3 weeks, show a clear pattern of induction with an approximately 3.5–9.5-fold increase in glutathione S-transferase activity. In vitro DNA binding of the promutagenic agents, [14C]-l,4-dichlorobenzene (DCB) and [14C]-1,4-dibromobenzene (DBB), is mediated by such metabolic liver preparations and showed a significant increase in covalent binding capability. In some instances, enzyme activity was more elevated when compared to that obtained with traditional (Phase I-induced) S9. Together with DNA binding, the genetic response of these chemicals in the diploid D7 strain of Saccharomyces cerevisiae used as a biological test system, revealed the ability of the BHA-derived preparations to activate the promutagenic agents, as exemplified by the significant enhancement of mitotic gene-conversion (up to 5.2-fold for DCB and 3.4-fold for DBB) and reverse point mutation (up to 3.6-fold for DCB and 2.5-fold for DBB) at a 4mM concentration. This novel metabolising biosystem, with enhanced Phase II activity, is recommended together with a traditional S9, for detecting unknown promutagens in genotoxicity studies. The routine use of either oxidative or post-oxidative S9 increases the responsiveness of the test and can contribute to the identification of promutagens not detected when using traditional protocols.


Author(s):  
Yanshan Cao ◽  
Ahsan Bairam ◽  
Alison Jee ◽  
Ming Liu ◽  
Jack Uetrecht

Abstract Trimethoprim (TMP)-induced skin rash and liver injury are likely to involve the formation of reactive metabolites. Analogous to nevirapine-induced skin rash, one possible reactive metabolite is the sulfate conjugate of α-hydroxyTMP, a metabolite of TMP. We synthesized this sulfate and found that it reacts with proteins in vitro. We produced a TMP-antiserum and found covalent binding of TMP in the liver of TMP-treated rats. However, we found that α-hydroxyTMP is not a substrate for human sulfotransferases, and we did not detect covalent binding in the skin of TMP-treated rats. Although less reactive than the sulfate, α-hydroxyTMP was found to covalently bind to liver and skin proteins in vitro. Even though there was covalent binding to liver proteins, TMP did not cause liver injury in rats or in our impaired immune tolerance mouse model that has been able to unmask the ability of other drugs to cause immune-mediated liver injury. This is likely because there was much less covalent binding of TMP in the livers of TMP-treated mice than TMP-treated rats. It is possible that some patients have a sulfotransferase that can produce the reactive benzylic sulfate; however, α-hydroxyTMP, itself, has sufficient reactivity to covalently bind to proteins in the skin and may be responsible for TMP-induced skin rash. Interspecies and interindividual differences in TMP metabolism may be one factor that determines the risk of TMP-induced skin rash. This study provides important data required to understand the mechanism of TMP-induced skin rash and drug-induced skin rash in general.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haixia Su ◽  
Sheng Yao ◽  
Wenfeng Zhao ◽  
Yumin Zhang ◽  
Jia Liu ◽  
...  

AbstractThe ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urgently needs an effective cure. 3CL protease (3CLpro) is a highly conserved cysteine proteinase that is indispensable for coronavirus replication, providing an attractive target for developing broad-spectrum antiviral drugs. Here we describe the discovery of myricetin, a flavonoid found in many food sources, as a non-peptidomimetic and covalent inhibitor of the SARS-CoV-2 3CLpro. Crystal structures of the protease bound with myricetin and its derivatives unexpectedly revealed that the pyrogallol group worked as an electrophile to covalently modify the catalytic cysteine. Kinetic and selectivity characterization together with theoretical calculations comprehensively illustrated the covalent binding mechanism of myricetin with the protease and demonstrated that the pyrogallol can serve as an electrophile warhead. Structure-based optimization of myricetin led to the discovery of derivatives with good antiviral activity and the potential of oral administration. These results provide detailed mechanistic insights into the covalent mode of action by pyrogallol-containing natural products and a template for design of non-peptidomimetic covalent inhibitors against 3CLpros, highlighting the potential of pyrogallol as an alternative warhead in design of targeted covalent ligands.


Sign in / Sign up

Export Citation Format

Share Document