Physiological Electric Fields Can Direct Keratinocyte Migration and Promote Healing in Chronic Wounds

2019 ◽  
Vol 116 (19) ◽  
pp. 9443-9452 ◽  
Author(s):  
Dongqing Li ◽  
Lara Kular ◽  
Manika Vij ◽  
Eva K. Herter ◽  
Xi Li ◽  
...  

An increasing number of studies reveal the importance of long noncoding RNAs (lncRNAs) in gene expression control underlying many physiological and pathological processes. However, their role in skin wound healing remains poorly understood. Our study focused on a skin-specific lncRNA, LOC105372576, whose expression was increased during physiological wound healing. In human nonhealing wounds, however, its level was significantly lower compared with normal wounds under reepithelialization. We characterized LOC105372576 as a nuclear-localized, RNAPII-transcribed, and polyadenylated lncRNA. In keratinocytes, its expression was induced by TGF-β signaling. Knockdown of LOC105372576 and activation of its endogenous transcription, respectively, reduced and increased the motility of keratinocytes and reepithelialization of human ex vivo skin wounds. Therefore, LOC105372576 was termed “wound and keratinocyte migration-associated lncRNA 1” (WAKMAR1). Further study revealed that WAKMAR1 regulated a network of protein-coding genes important for cell migration, most of which were under the control of transcription factor E2F1. Mechanistically, WAKMAR1 enhanced E2F1 expression by interfering with E2F1 promoter methylation through the sequestration of DNA methyltransferases. Collectively, we have identified a lncRNA important for keratinocyte migration, whose deficiency may be involved in the pathogenesis of chronic wounds.


2021 ◽  
Vol 39 ◽  
Author(s):  
Bodhisatwa Das ◽  
◽  
Francois Berthiaume ◽  

Debridement is a standard part of wound care that is used on both acute and chronic wounds. Current methods of wound debridement include: autolytic based on the natural immune response, surgical, enzymatic based on application of exogenous proteases, mechanical using water jets and ultrasound, and biological using live organisms such as maggots. The choice of individual methods involves a trade-off between speed of treatment, selectivity, and pain. Irreversible electroporation via the application of pulsed electric fields has been used as a novel approach for deep tissue ablation, sometimes in conjunction with chemotherapy, as in the case of tumors, and also in cases where high precision is needed in otherwise very fragile tissues, such as for treating diabetic neuropathy and in epicardial atrial ablation. This method could be readily extended to wound care as it is both rapid and relatively painless, and it is also effective at decreasing bacterial load and clearing biofilms. Furthermore, the process primarily targets cells leaving the extracellular matrix relatively intact, thus providing a suitable natural scaffold for host cellular invasion and regrowth. A unique aspect of the use of pulsed electric fields is that around the region where ablation is perfomed, electric fields of lower energy are dissipated into the healthy tissue. There is a range of electric fields that are known to stimulate cellular functions, in particular migration and proliferation, and that may contribute to the healing process after electroporation. While irreversible electroporation is a potentially useful alternative to other debridement methods, future clinical application awaits technological advances in electrode design that will enable precise delivery of the therapy in wounds of various sizes and depths.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ivan Jozic ◽  
Beatriz Abdo Abujamra ◽  
Michael H. Elliott ◽  
Tongyu C. Wikramanayake ◽  
Jelena Marjanovic ◽  
...  

AbstractAlthough impaired keratinocyte migration is a recognized hallmark of chronic wounds, the molecular mechanisms underpinning impaired cell movement are poorly understood. Here, we demonstrate that both diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) exhibit global deregulation of cytoskeletal organization in genomic comparison to normal skin and acute wounds. Interestingly, we found that DFUs and VLUs exhibited downregulation of ArhGAP35, which serves both as an inactivator of RhoA and as a glucocorticoid repressor. Since chronic wounds exhibit elevated levels of cortisol and caveolin-1 (Cav1), we posited that observed elevation of Cav1 expression may contribute to impaired actin-cytoskeletal signaling, manifesting in aberrant keratinocyte migration. We showed that Cav1 indeed antagonizes ArhGAP35, resulting in increased activation of RhoA and diminished activation of Cdc42, which can be rescued by Cav1 disruption. Furthermore, we demonstrate that both inducible keratinocyte specific Cav1 knockout mice, and MβCD treated diabetic mice, exhibit accelerated wound closure. Taken together, our findings provide a previously unreported mechanism by which Cav1-mediated cytoskeletal organization prevents wound closure in patients with chronic wounds.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3007
Author(s):  
Revathy Deivasigamani ◽  
Nur Nasyifa Mohd Maidin ◽  
M. F. Mohd Razip Wee ◽  
Mohd Ambri Mohamed ◽  
Muhamad Ramdzan Buyong

Diabetes patients are at risk of having chronic wounds, which would take months to years to resolve naturally. Chronic wounds can be countered using the electrical stimulation technique (EST) by dielectrophoresis (DEP), which is label-free, highly sensitive, and selective for particle trajectory. In this study, we focus on the validation of polystyrene particles of 3.2 and 4.8 μm to predict the behavior of keratinocytes to estimate their crossover frequency (fXO) using the DEP force (FDEP) for particle manipulation. MyDEP is a piece of java-based stand-alone software used to consider the dielectric particle response to AC electric fields and analyzes the electrical properties of biological cells. The prototypic 3.2 and 4.8 μm polystyrene particles have fXO values from MyDEP of 425.02 and 275.37 kHz, respectively. Fibroblast cells were also subjected to numerical analysis because the interaction of keratinocytes and fibroblast cells is essential for wound healing. Consequently, the predicted fXO from the MyDEP plot for keratinocyte and fibroblast cells are 510.53 and 28.10 MHz, respectively. The finite element method (FEM) is utilized to compute the electric field intensity and particle trajectory based on DEP and drag forces. Moreover, the particle trajectories are quantified in a high and low conductive medium. To justify the simulation, further DEP experiments are carried out by applying a non-uniform electric field to a mixture of different sizes of polystyrene particles and keratinocyte cells, and these results are well agreed. The alive keratinocyte cells exhibit NDEP force in a highly conductive medium from 100 kHz to 25 MHz. 2D/3D motion analysis software (DIPP-MotionV) can also perform image analysis of keratinocyte cells and evaluate the average speed, acceleration, and trajectory position. The resultant NDEP force can align the keratinocyte cells in the wound site upon suitable applied frequency. Thus, MyDEP estimates the Clausius–Mossotti factors (CMF), FEM computes the cell trajectory, and the experimental results of prototypic polystyrene particles are well correlated and provide an optimistic response towards keratinocyte cells for rapid wound healing applications.


Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
John Silcox

Several aspects of magnetic and electric effects in electron microscope images are of interest and will be discussed here. Clearly electrons are deflected by magnetic and electric fields and can give rise to image detail. We will review situations in ferromagnetic films in which magnetic image effects are the predominant ones, others in which the magnetic effects give rise to rather subtle changes in diffraction contrast, cases of contrast at specimen edges due to leakage fields in both ferromagnets and superconductors and some effects due to electric fields in insulators.


Author(s):  
Debby A. Jennings ◽  
Michael J. Morykwas ◽  
Louis C. Argenta

Grafts of cultured allogenic or autogenic keratlnocytes have proven to be an effective treatment of chronic wounds and burns. This study utilized a collagen substrate for keratinocyte and fibroblast attachment. The substrate provided mechanical stability and augmented graft manipulation onto the wound bed. Graft integrity was confirmed by light and transmission electron microscopy.Bovine Type I dermal collagen sheets (100 μm thick) were crosslinked with 254 nm UV light (13.5 Joules/cm2) to improve mechanical properties and reduce degradation. A single cell suspension of third passage neonatal foreskin fibroblasts were plated onto the collagen. Five days later, a single cell suspension of first passage neonatal foreskin keratinocytes were plated on the opposite side of the collagen. The grafts were cultured for one month.The grafts were fixed in phosphate buffered 4% formaldehyde/1% glutaraldehyde for 24 hours. Graft pieces were then washed in 0.13 M phosphate buffer, post-fixed in 1% osmium tetroxide, dehydrated, and embedded in Polybed 812.


Author(s):  
V. Kaushik ◽  
P. Maniar ◽  
J. Olowolafe ◽  
R. Jones ◽  
A. Campbell ◽  
...  

Lead zirconium titanate films (Pb (Zr,Ti) O3 or PZT) are being considered for potential application as dielectric films in memory technology due to their high dielectric constants. PZT is a ferroelectric material which shows spontaneous polarizability, reversible under applied electric fields. We report herein some results of TEM studies on thin film capacitor structures containing PZT films with platinum-titanium electrodes.The wafers had a stacked structure consisting of PZT/Pt/Ti/SiO2/Si substrate as shown in Figure 1. Platinum acts as electrode material and titanium is used to overcome the problem of platinum adhesion to the oxide layer. The PZT (0/20/80) films were deposited using a sol-gel method and the structure was annealed at 650°C and 800°C for 30 min in an oxygen ambient. XTEM imaging was done at 200KV with the electron beam parallel to <110> zone axis of silicon.Figure 2 shows the PZT and Pt layers only, since the structure had a tendency to peel off at the Ti-Pt interface during TEM sample preparation.


Author(s):  
Martin Peckerar ◽  
Anastasios Tousimis

Solid state x-ray sensing systems have been used for many years in conjunction with scanning and transmission electron microscopes. Such systems conveniently provide users with elemental area maps and quantitative chemical analyses of samples. Improvements on these tools are currently sought in the following areas: sensitivity at longer and shorter x-ray wavelengths and minimization of noise-broadening of spectral lines. In this paper, we review basic limitations and recent advances in each of these areas. Throughout the review, we emphasize the systems nature of the problem. That is. limitations exist not only in the sensor elements but also in the preamplifier/amplifier chain and in the interfaces between these components.Solid state x-ray sensors usually function by way of incident photons creating electron-hole pairs in semiconductor material. This radiation-produced mobile charge is swept into external circuitry by electric fields in the semiconductor bulk.


Sign in / Sign up

Export Citation Format

Share Document