scholarly journals Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Joydeb Majumder ◽  
Tamara Minko

AbstractThe ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious public health threat worldwide with millions of people at risk in a growing number of countries. Though there are no clinically approved antiviral drugs and vaccines for COVID-19, attempts are ongoing for clinical trials of several known antiviral drugs, their combination, as well as development of vaccines in patients with confirmed COVID-19. This review focuses on the latest approaches to diagnostics and therapy of COVID-19. We have summarized recent progress on the conventional therapeutics such as antiviral drugs, vaccines, anti-SARS-CoV-2 antibody treatments, and convalescent plasma therapy which are currently under extensive research and clinical trials for the treatment of COVID-19. The developments of nanoparticle-based therapeutic and diagnostic approaches have been also discussed for COVID-19. We have assessed recent literature data on this topic and made a summary of current development and future perspectives.

2021 ◽  
Vol 6 (2) ◽  
pp. 65-67
Author(s):  
Anika Tursa Promi ◽  
Sanzida Islam Bristi ◽  
Farhana Akhter ◽  
Rashed Noor

COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been the most dreadful mass public health threat for more than a year. An array of clinical trials with repurposed and repositioned drugs as well as with the candidate vaccines are being conducted with the aim of mitigation of COVID-19. While a few antiviral drugs and several candidate vaccines showed satisfactory results in the clinical trials, the side effects after vaccination and the evolution of new SARS-CoV-2 variants appear as a major challenge for the scientists. Present review focused on the possible reasons behind the lethality of SARS-CoV-2.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2193
Author(s):  
Pedro Cruz-Vicente ◽  
Luís A. Passarinha ◽  
Samuel Silvestre ◽  
Eugenia Gallardo

Neurodegenerative diseases (ND), including Alzheimer’s (AD) and Parkinson’s Disease (PD), are becoming increasingly more common and are recognized as a social problem in modern societies. These disorders are characterized by a progressive neurodegeneration and are considered one of the main causes of disability and mortality worldwide. Currently, there is no existing cure for AD nor PD and the clinically used drugs aim only at symptomatic relief, and are not capable of stopping neurodegeneration. Over the last years, several drug candidates reached clinical trials phases, but they were suspended, mainly because of the unsatisfactory pharmacological benefits. Recently, the number of compounds developed using in silico approaches has been increasing at a promising rate, mainly evaluating the affinity for several macromolecular targets and applying filters to exclude compounds with potentially unfavorable pharmacokinetics. Thus, in this review, an overview of the current therapeutics in use for these two ND, the main targets in drug development, and the primary studies published in the last five years that used in silico approaches to design novel drug candidates for AD and PD treatment will be presented. In addition, future perspectives for the treatment of these ND will also be briefly discussed.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


2018 ◽  
Vol 19 (8) ◽  
pp. 631-643 ◽  
Author(s):  
Fazlurrahman Khan ◽  
Mohammad M. Khan ◽  
Young-Mog Kim

Author(s):  
Subha Sankar Paul ◽  
Goutam Biswas

: COVID-19 is a public health emergency of international concern. Although, considerable knowledge has been acquired with time about the viral mechanism of infection and mode of replication, yet no specific drugs or vaccines have been discovered against SARS-CoV-2, till date. There are few small molecule antiviral drugs like Remdesivir and Favipiravir which have shown promising results in different advanced stage of clinical trials. Chloroquinine, Hydroxychloroquine, and Lopinavir-Ritonavir combination, although initially was hypothesized to be effective against SARS-CoV-2, are now discontinued from the solidarity clinical trials. This review provides a brief description of their chemical syntheses along with their mode of action and clinical trial results available in Google and different peer reviewed journals till 24th October 2020.


Antibodies ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ahmad Iftikhar ◽  
Hamza Hassan ◽  
Nimra Iftikhar ◽  
Adeela Mushtaq ◽  
Atif Sohail ◽  
...  

Background: Immunotherapy for multiple myeloma (MM) has been the focus in recent years due to its myeloma-specific immune responses. We reviewed the literature on non-Food and Drug Administration (FDA) approved monoclonal antibodies (mAbs) to highlight future perspectives. We searched PubMed, EMBASE, Web of Science, Cochrane Library and ClinicalTrials.gov to include phase I/II clinical trials. Data from 39 studies (1906 patients) were included. Of all the agents, Isatuximab (Isa, anti-CD38) and F50067 (anti-CXCR4) were the only mAbs to produce encouraging results as monotherapy with overall response rates (ORRs) of 66.7% and 32% respectively. Isa showed activity when used in combination with lenalidomide (Len) and dexamethasone (Dex), producing a clinical benefit rate (CBR) of 83%. Additionally, Isa used in combination with pomalidomide (Pom) and Dex resulted in a CBR of 73%. Indatuximab Ravtansine (anti-CD138 antibody-drug conjugate) produced an ORR of 78% and 79% when used in combination with Len-Dex and Pom-Dex, respectively. Conclusions: Combination therapy using mAbs such as indatuximab, pembrolizumab, lorvotuzumab, siltuximab or dacetuzumab with chemotherapy agents produced better outcomes as compared to monotherapies. Further clinical trials investigating mAbs targeting CD38 used in combination therapy are warranted.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1455
Author(s):  
Emilio Iturriaga-Goyon ◽  
Beatriz Buentello-Volante ◽  
Fátima Sofía Magaña-Guerrero ◽  
Yonathan Garfias

Aptamers are single-stranded DNA or RNA oligonucleotides that are currently used in clinical trials due to their selectivity and specificity to bind small molecules such as proteins, peptides, viral particles, vitamins, metal ions and even whole cells. Aptamers are highly specific to their targets, they are smaller than antibodies and fragment antibodies, they can be easily conjugated to multiple surfaces and ions and controllable post-production modifications can be performed. Aptamers have been therapeutically used for age-related macular degeneration, cancer, thrombosis and inflammatory diseases. The aim of this review is to highlight the therapeutic, diagnostic and prognostic possibilities associated with aptamers, focusing on eye pathological angiogenesis.


2021 ◽  
Vol 11 (9) ◽  
pp. 4242
Author(s):  
Manggar Arum Aristri ◽  
Muhammad Adly Rahandi Lubis ◽  
Sumit Manohar Yadav ◽  
Petar Antov ◽  
Antonios N. Papadopoulos ◽  
...  

This review article aims to summarize the potential of using renewable natural resources, such as lignin and tannin, in the preparation of NIPUs for wood adhesives. Polyurethanes (PUs) are extremely versatile polymeric materials, which have been widely used in numerous applications, e.g., packaging, footwear, construction, the automotive industry, the lighting industry, insulation panels, bedding, furniture, metallurgy, sealants, coatings, foams, and wood adhesives. The isocyanate-based PUs exhibit strong adhesion properties, excellent flexibility, and durability, but they lack renewability. Therefore, this study focused on the development of non-isocyanate polyurethane lignin and tannin resins for wood adhesives. PUs are commercially synthesized using polyols and polyisocyanates. Isocyanates are toxic, costly, and not renewable; thus, a search of suitable alternatives in the synthesis of polyurethane resins is needed. The reaction with diamine compounds could result in NIPUs based on lignin and tannin. The research on bio-based components for PU synthesis confirmed that they have good characteristics as an alternative for the petroleum-based adhesives. The advantages of improved strength, low curing temperatures, shorter pressing times, and isocyanate-free properties were demonstrated by lignin- and tannin-based NIPUs. The elimination of isocyanate, associated with environmental and human health hazards, NIPU synthesis, and its properties and applications, including wood adhesives, are reported comprehensively in this paper. The future perspectives of NIPUs’ production and application were also outlined.


Sign in / Sign up

Export Citation Format

Share Document