scholarly journals Kramers-Kronig relations for the dielectric function and the static conductivity of Coulomb systems

2010 ◽  
Vol 90 (1) ◽  
pp. 10003 ◽  
Author(s):  
V. B. Bobrov ◽  
S. A. Trigger ◽  
G. J. F. van Heijst ◽  
P. P. J. M. Schram
2000 ◽  
Vol 53 (1) ◽  
pp. 133 ◽  
Author(s):  
H. Reinholz

A generalised linear response theory is used to derive the dielectric function at arbitrary wave numbers k and frequencies w for interacting quantum systems. The connection to thermodynamic Green functions allows the systematic perturbative treatment going beyond RPA and treating local field corrections as well as the inclusion of collisions on the same footing. Emphasis will be on the demonstration of the formalism. Results will be presented for the three-dimensional as well as two-dimensional case of an interacting electron gas. In the long-wavelength limit, a Drude-type expression with frequency dependent relaxation time is given bridging the theories of dielectric function and electrical conductivity.


2015 ◽  
Vol 8 (2) ◽  
pp. 2148-2155 ◽  
Author(s):  
Abderrahim Benchaib ◽  
Abdesselam Mdaa ◽  
Izeddine Zorkani ◽  
Anouar Jorio

The vanadium dioxide is a material thermo chromium which sees its optical properties changing at the time of the transition from the phase of semiconductor state ↔ metal, at a critical temperature of 68°C. The study of the optical properties of a thin layer of VO₂ thickness 82 nm, such as the dielectric function, the index of refraction, the coefficient ofextinction, the absorption’s coefficient, the reflectivity, the transmittivity, in the photonic spectrum of energy ω located inthe interval: 0.001242 ≤ ω (ev) ≤ 6, enables us to control well its practical utility in various applications, like the intelligentpanes, the photovoltaic, paintings for increasing energy efficiency in buildings, detectors of infra-red (I.R) or ultra-violet(U.V). We will make simulations with Maple and compare our results with those of the literature


Author(s):  
Lev G. D’YACHKOV ◽  
Mikhail M. VASILYEV ◽  
Oleg F. PETROV ◽  
Sergey F. SAVIN ◽  
Igor V. CHURILO

We discuss the possibility of using static magnetic traps as an alternative to electrostatic traps for forming and confining structures of charged dust particles in a gas discharge plasma in the context of our study of strongly interacting Coulomb systems. Some advantages of confining structures in magnetic traps over electrostatic ones are shown. Also we provide a review of the related researches carried out first in laboratory conditions, and then under microgravity conditions including the motivation of performing the experiments aboard the International Space Station (ISS). The preparations of a new space experiment «Coulomb-magnet» as well as the differences of a new equipment from previously used are described. We proposed the main tasks of the new experiment as a study of the dynamics and structure of active monodisperse and polydisperse macroparticles in an inhomogeneous magnetic field under microgravity conditions, including phase transitions and the evolution of such systems in the kinetic heating of dust particles by laser radiation. Key words: Coulomb structures, magnetic trap, antiprobotron, diamagnetic particles, dust particles, microgravity.


1997 ◽  
Vol 481 ◽  
Author(s):  
J. P. Callan ◽  
A. M.-T. Kim ◽  
L. Huangt ◽  
E. N. Glezer ◽  
E. Mazur

ABSTRACTWe use a new broadband spectroscopic technique to measure ultrafast changes in the dielectric function of a material over the spectral range 1.5–3.5 eV following intense 70-fs laser excitation. The results reveal the nature of the phase transformations which occur in the material following excitation. We studied the response of GaAs and Si. For GaAs, there are three distinct regimes of behavior as the pump fluence is increased — lattice heating, lattice disordering, and a semiconductor-to-metal transition.


2019 ◽  
Vol 3 (12) ◽  
Author(s):  
Stefana Anais Colibaba ◽  
Sabine Körbel ◽  
Carlo Motta ◽  
Fedwa El-Mellouhi ◽  
Stefano Sanvito

1995 ◽  
Vol 52 (20) ◽  
pp. 14935-14940 ◽  
Author(s):  
Lorin X. Benedict ◽  
Vincent H. Crespi ◽  
Steven G. Louie ◽  
Marvin L. Cohen

1997 ◽  
Vol 11 (04) ◽  
pp. 129-138 ◽  
Author(s):  
V. Sa-Yakanit ◽  
V. D. Lakhno ◽  
Klaus Haß

The generalized path integral approach is applied to calculate the ground state energy and the effective mass of an electron-plasmon interacting system for a wide range of densities. It is shown that in the self-consistent approximation an abrupt transition between the weak coupling and the strong coupling region of interaction exists. The transition occurs at low electron densities according to a value of 418 for rs, when Wigner crystallization is possible. For densities of real metals, the electron bandwidth is calculated and a comparison with experimental results is given.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 125
Author(s):  
Tobias Gulden ◽  
Alex Kamenev

We study dynamics and thermodynamics of ion transport in narrow, water-filled channels, considered as effective 1D Coulomb systems. The long range nature of the inter-ion interactions comes about due to the dielectric constants mismatch between the water and the surrounding medium, confining the electric filed to stay mostly within the water-filled channel. Statistical mechanics of such Coulomb systems is dominated by entropic effects which may be accurately accounted for by mapping onto an effective quantum mechanics. In presence of multivalent ions the corresponding quantum mechanics appears to be non-Hermitian. In this review we discuss a framework for semiclassical calculations for the effective non-Hermitian Hamiltonians. Non-Hermiticity elevates WKB action integrals from the real line to closed cycles on a complex Riemann surfaces where direct calculations are not attainable. We circumvent this issue by applying tools from algebraic topology, such as the Picard-Fuchs equation. We discuss how its solutions relate to the thermodynamics and correlation functions of multivalent solutions within narrow, water-filled channels.


2006 ◽  
Vol 73 (15) ◽  
Author(s):  
G. R. Bell ◽  
T. D. Veal ◽  
J. A. Frost ◽  
C. F. McConville

Sign in / Sign up

Export Citation Format

Share Document