scholarly journals Follicle-Stimulating Hormone Increases Tuberin Phosphorylation and Mammalian Target of Rapamycin Signaling through an Extracellular Signal-Regulated Kinase-Dependent Pathway in Rat Granulosa Cells

Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3950-3957 ◽  
Author(s):  
Pradeep P. Kayampilly ◽  
K. M. J. Menon

FSH-mediated regulation of mammalian target of rapamycin (mTOR) signaling in proliferating granulosa cells and the effect of dihydrotestosterone (DHT) on this pathway were examined. Inhibiting mTOR activation using rapamycin significantly reduced the FSH-mediated increase in cyclin D2 mRNA expression, suggesting that mTOR plays a role in the FSH-mediated increase in granulosa cell proliferation. FSH treatment of granulosa cells showed a 2-fold increase in phosphorylation of p70S6 kinase (p70S6K), the downstream target of mTOR. The increase in p70S6K phosphorylation by FSH treatment was abolished by prior exposure to DHT, suggesting that DHT inhibits FSH-mediated activation of mTOR signaling in cultured granulosa cells. The effect of FSH and DHT treatment on tuberin (TSC2), the upstream regulator of mTOR, was then examined. FSH treatment increased TSC2 phosphorylation, and pretreatment with DHT for 24 h reduced this stimulation. These results indicate that reduced p70S6K phosphorylation observed in DHT-treated cells might be the result of reduced TSC2 phosphorylation. Because Akt is the upstream activator of TSC2 phosphorylation, the effect of Akt inhibition was examined to test whether FSH-mediated TSC2 phosphorylation proceeds through an Akt-dependent pathway. Our results show that inhibiting Akt phosphorylation did not block FSH-stimulated TSC2 phosphorylation, whereas ERK inhibition reduced FSH-mediated stimulation. These results demonstrate the involvement of ERK rather than Akt in FSH-mediated TSC2 phosphorylation in granulosa cells. Based on these observations, we conclude that in granulosa cells, FSH uses a protein kinase A-/ERK-dependent pathway to stimulate TSC2 phosphorylation and mTOR signaling, and DHT treatment significantly reduces this response.

2020 ◽  
Vol 27 ◽  
Author(s):  
Naser-Aldin Lashgari ◽  
Nazanin Momeni Roudsari ◽  
Saeideh Momtaz ◽  
Negar Ghanaatian ◽  
Parichehr Kohansal ◽  
...  

: Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview on plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


2021 ◽  
Vol 22 (2) ◽  
pp. 817
Author(s):  
Junfang Yan ◽  
Yi Xie ◽  
Jing Si ◽  
Lu Gan ◽  
Hongyan Li ◽  
...  

Cell can integrate the caspase family and mammalian target of rapamycin (mTOR) signaling in response to cellular stress triggered by environment. It is necessary here to elucidate the direct response and interaction mechanism between the two signaling pathways in regulating cell survival and determining cell fate under cellular stress. Members of the caspase family are crucial regulators of inflammation, endoplasmic reticulum stress response and apoptosis. mTOR signaling is known to mediate cell growth, nutrition and metabolism. For instance, over-nutrition can cause the hyperactivation of mTOR signaling, which is associated with diabetes. Nutrition deprivation can inhibit mTOR signaling via SH3 domain-binding protein 4. It is striking that Ras GTPase-activating protein 1 is found to mediate cell survival in a caspase-dependent manner against increasing cellular stress, which describes a new model of apoptosis. The components of mTOR signaling-raptor can be cleaved by caspases to control cell growth. In addition, mTOR is identified to coordinate the defense process of the immune system by suppressing the vitality of caspase-1 or regulating other interferon regulatory factors. The present review discusses the roles of the caspase family or mTOR pathway against cellular stress and generalizes their interplay mechanism in cell fate determination.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4560-4568 ◽  
Author(s):  
Bao Hoang ◽  
Patrick Frost ◽  
Yijiang Shi ◽  
Eileen Belanger ◽  
Angelica Benavides ◽  
...  

Although preclinical work with rapalogs suggests potential in treatment of multiple myeloma (MM), they have been less successful clinically. These drugs allostearically inhibit the mammalian target of rapamycin kinase primarily curtailing activity of the target of rapamycin complex (TORC)1. To assess if the mammalian target of rapamycin within the TORC2 complex could be a better target in MM, we tested a new agent, pp242, which prevents activation of TORC2 as well as TORC1. Although comparable to rapamycin against phosphorylation of the TORC1 substrates p70S6kinase and 4E-BP-1, pp242 could also inhibit phosphorylation of AKT on serine 473, a TORC2 substrate, while rapamycin was ineffective. pp242 was also more effective than rapamycin in achieving cytoreduction and apoptosis in MM cells. In addition, pp242 was an effective agent against primary MM cells in vitro and growth of 8226 cells in mice. Knockdown of the TORC2 complex protein, rictor, was deleterious to MM cells further supporting TORC2 as the critical target for pp242. TORC2 activation was frequently identified in primary specimens by immunostaining for AKT phosphorylation on serine 473. Potential mechanisms of up-regulated TORC2 activity in MM were stimulation with interleukin-6 or insulin-like growth factor 1, and phosphatase and tensin homolog or RAS alterations. Combining pp242 with bortezomib led to synergistic anti-MM effects. These results support TORC2 as a therapeutic target in MM.


2009 ◽  
Vol 297 (2) ◽  
pp. E410-E415 ◽  
Author(s):  
Jamie I. Baum ◽  
Scot R. Kimball ◽  
Leonard S. Jefferson

The opposing actions of insulin and glucagon on hepatic carbohydrate metabolism are well documented. In contrast, relatively little is known about how the two hormones interact to regulate hepatic protein metabolism. Previously, we reported that glucagon in the absence of insulin represses signaling through the mammalian target of rapamycin complex 1 (mTORC1). In the present study, we sought to determine whether or not the action of one hormone would dominate over the other in the regulation of mTORC1 signaling. Livers were perfused in situ with medium containing either no added hormones (control), 10 nM insulin, 100 nM glucagon, or a combination of the hormones. Compared with control livers, insulin stimulated Akt phosphorylation and mTORC1 signaling, as assessed by increased phosphorylation of the mTORC1 targets eIF4E-binding protein (4E-BP)1 and ribosomal protein S6 kinase (S6K)1, and promoted assembly of the eIF4G·eIF4E complex. Glucagon alone had no effect on mTORC1 signaling but stimulated the activity of protein kinase A (PKA). In the presence of a combination of insulin and glucagon, Akt and TSC2 phosphorylation and PKA activity were all increased compared with controls. However, mTORC1 signaling was repressed compared with livers perfused with medium containing insulin alone, and this effect was associated with reduced assembly of the mTORC1·eIF3 complex. Overall, the results suggest that glucagon acts in a dominant manner to repress insulin-induced mTORC1 signaling, which is in contrast to previous studies showing a dominant action of insulin in the control of hepatic gluconeogenesis.


Sign in / Sign up

Export Citation Format

Share Document