scholarly journals Human Chorionic Gonadotropin Produced by the Invasive Trophoblast But Not the Villous Trophoblast Promotes Cell Invasion and Is Down-Regulated by Peroxisome Proliferator-Activated Receptor-γ

Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 5011-5019 ◽  
Author(s):  
Karen Handschuh ◽  
Jean Guibourdenche ◽  
Vassilis Tsatsaris ◽  
Mickaël Guesnon ◽  
Ingrid Laurendeau ◽  
...  

A critical step in the establishment of human pregnancy is the invasion of the uterus wall by extravillous cytotrophoblasts (EVCTs) during the first trimester. It is well established that human chorionic gonadotropin hormone (hCG) is secreted by the endocrine syncytiotrophoblast (ST) into the maternal compartment. We recently reported that invasive EVCTs also produce hCG, suggesting an autocrine role in the modulation of trophoblast invasion. Here we analyzed the role of hCG secreted in vitro by primary cultures of invasive EVCT and noninvasive ST. We first demonstrated that LH/CG receptor was present in EVCTs in situ and in vitro as well as in an EVCT cell line (HIPEC65). We next showed that hCG secreted by EVCTs stimulated progesterone secretion by MA10 cells in a concentration-dependent manner. Incubation of HIPEC65 with EVCT supernatants induced a 10-fold increase in cell invasion, whereas ST supernatants had no effect. This stimulating effect was strongly decreased when hCG was depleted from EVCT supernatants containing a large amount of the hyperglycosylated form of hCG, which is almost undetectable in ST supernatants. Finally, we investigated the regulation of hCG expression by peroxisome proliferator-activated receptor (PPAR)-γ, a nuclear receptor shown to inhibit trophoblast invasion. Activation of PPARγ decreased α- and β-subunit transcript levels and total hCG secretion in primary EVCTs. Our results offer the first evidence that hCG secreted by the invasive trophoblast, likely the hyperglycosylated form of hCG, but not by the syncytiotrophoblast, promotes trophoblast invasion and may be a PPARγ target gene in trophoblast invasion process.

2021 ◽  
Vol 22 (22) ◽  
pp. 12469
Author(s):  
Sarah Meister ◽  
Laura Hahn ◽  
Susanne Beyer ◽  
Corinna Paul ◽  
Sophie Mitter ◽  
...  

The aim of this study was to analyze the expression of peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RxRα), a binding heterodimer playing a pivotal role in the successful trophoblast invasion, in the placental tissue of preeclamptic patients. Furthermore, we aimed to characterize a possible interaction between PPARγ and H3K4me3 (trimethylated lysine 4 of the histone H3), respectively H3K9ac (acetylated lysine 9 of the histone H3), to illuminate the role of histone modifications in a defective trophoblast invasion in preeclampsia (PE). Therefore, the expression of PPARγ and RxRα was analyzed in 26 PE and 25 control placentas by immunohistochemical peroxidase staining, as well as the co-expression with H3K4me3 and H3K9ac by double immunofluorescence staining. Further, the effect of a specific PPARγ-agonist (Ciglitazone) and PPARγ-antagonist (T0070907) on the histone modifications H3K9ac and H3K4me3 was analyzed in vitro. In PE placentas, we found a reduced expression of PPARγ and RxRα and a reduced co-expression with H3K4me3 and H3K9ac in the extravillous trophoblast (EVT). Furthermore, with the PPARγ-antagonist treated human villous trophoblast (HVT) cells and primary isolated EVT cells showed higher levels of the histone modification proteins whereas treatment with the PPARγ-agonist reduced respective histone modifications. Our results show that the stimulation of PPARγ-activity leads to a reduction of H3K4me3 and H3K9ac in trophoblast cells, but paradoxically decreases the nuclear PPARγ expression. As the importance of PPARγ, being involved in a successful trophoblast invasion has already been investigated, our results reveal a pathophysiologic connection between PPARγ and the epigenetic modulation via H3K4me3 and H3K9ac in PE.


2009 ◽  
Vol 84 (6) ◽  
pp. 2946-2954 ◽  
Author(s):  
Benjamin Rauwel ◽  
Bernard Mariamé ◽  
Hélène Martin ◽  
Ronni Nielsen ◽  
Sophie Allart ◽  
...  

ABSTRACT Human cytomegalovirus (HCMV) contributes to pathogenic processes in immunosuppressed individuals, in fetuses, and in neonates. In the present report, by using reporter gene activation assays and confocal microscopy in the presence of a specific antagonist, we show for the first time that HCMV infection induces peroxisome proliferator-activated receptor gamma (PPARγ) transcriptional activity in infected cells. We demonstrate that the PPARγ antagonist dramatically impairs virus production and that the major immediate-early promoter contains PPAR response elements able to bind PPARγ, as assessed by electrophoretic mobility shift and chromatin immunoprecipitation assays. Due to the key role of PPARγ in placentation and its specific trophoblast expression within the human placenta, we then provided evidence that by activating PPARγ human cytomegalovirus dramatically impaired early human trophoblast migration and invasiveness, as assessed by using well-established in vitro models of invasive trophoblast, i.e., primary cultures of extravillous cytotrophoblasts (EVCT) isolated from first-trimester placentas and the EVCT-derived cell line HIPEC. Our data provide new clues to explain how early infection during pregnancy could impair implantation and placentation and therefore embryonic development.


PPAR Research ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Sean R. Pyper ◽  
Navin Viswakarma ◽  
Yuzhi Jia ◽  
Yi-Jun Zhu ◽  
Joseph D. Fondell ◽  
...  

The peroxisome proliferator-activated receptor- (PPAR) plays a key role in lipid metabolism and energy combustion. Chronic activation of PPAR in rodents leads to the development of hepatocellular carcinomas. The ability of PPAR to induce expression of its target genes depends on Mediator, an evolutionarily conserved complex of cofactors and, in particular, the subunit 1 (Med1) of this complex. Here, we report the identification and characterization of PPAR-interacting cofactor (PRIC)-295 (PRIC295), a novel coactivator protein, and show that it interacts with the Med1 and Med24 subunits of the Mediator complex. PRIC295 contains 10 LXXLL signature motifs that facilitate nuclear receptor binding and interacts with PPAR and five other members of the nuclear receptor superfamily in a ligand-dependent manner. PRIC295 enhances the transactivation function of PPAR, PPAR, and ER. These data demonstrate that PRIC295 interacts with nuclear receptors such as PPAR and functions as a transcription coactivator underin vitroconditions and may play an important role in mediating the effectsin vivoas a member of the PRIC complex with Med1 and Med24.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Nadia Calabriso ◽  
Antonio Gnoni ◽  
Eleonora Stanca ◽  
Alessandro Cavallo ◽  
Fabrizio Damiano ◽  
...  

Mitochondria are fundamental organelles producing energy and reactive oxygen species (ROS); their impaired functions play a key role in endothelial dysfunction. Hydroxytyrosol (HT), a well-known olive oil antioxidant, exerts health benefits against vascular diseases by improving endothelial function. However, the HT role in mitochondrial oxidative stress in endothelial dysfunction is not clear yet. To investigate the HT effects on mitochondrial ROS production in the inflamed endothelium, we used an in vitro model of endothelial dysfunction represented by cultured endothelial cells, challenged with phorbol myristate acetate (PMA), an inflammatory, prooxidant, and proangiogenic agent. We found that the pretreatment of endothelial cells with HT (1–30 μmol/L) suppressed inflammatory angiogenesis, a crucial aspect of endothelial dysfunction. The HT inhibitory effect is related to reduced mitochondrial superoxide production and lipid peroxidation and to increased superoxide dismutase activity. HT, in a concentration-dependent manner, improved endothelial mitochondrial function by reverting the PMA-induced reduction of mitochondrial membrane potential, ATP synthesis, and ATP5β expression. In PMA-challenged endothelial cells, HT also promoted mitochondrial biogenesis through increased mitochondrial DNA content and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, nuclear respiratory factor-1, and mitochondrial transcription factor A. These results highlight that HT blunts endothelial dysfunction and pathological angiogenesis by ameliorating mitochondrial function, thus suggesting HT as a potential mitochondria-targeting antioxidant in the inflamed endothelium.


2012 ◽  
Vol 32 (6) ◽  
pp. 619-629 ◽  
Author(s):  
Chanjuan Hao ◽  
Xuejia Cheng ◽  
Hongfei Xia ◽  
Xu Ma

The environmental obesogen hypothesis proposes that exposure to endocrine disruptors during developmental ‘window’ contributes to adipogenesis and the development of obesity. MEHP [mono-(2-ethylhexyl) phthalate], a metabolite of the widespread plasticizer DEHP [di-(2-ethylhexyl) phthalate], has been found in exposed organisms and identified as a selective PPARγ (peroxisome-proliferator-activated receptor γ) modulator. However, implication of MEHP on adipose tissue development has been poorly investigated. In the present study, we show the dose-dependent effects of MEHP on adipocyte differentiation and GPDH (glycerol-3-phosphate dehydrogenase) activity in the murine 3T3-L1 cell model. MEHP induced the expression of PPARγ as well as its target genes required for adipogenesis in vitro. Moreover, MEHP perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to a low dose of MEHP significantly increased b.w. (body weight) and fat pad weight in male offspring at PND (postnatal day) 60. In addition, serum cholesterol, TAG (triacylglycerol) and glucose levels were also significantly elevated. These results suggest that perinatal exposure to MEHP may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders.


Author(s):  
Linglan Gu ◽  
Yi Shi ◽  
Weimin Xu ◽  
Yangyang Ji

In previous investigations, we reported that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activation by GW501516 inhibits proliferation and promotes apoptosis in the undifferentiated C666-1 nasopharyngeal carcinoma (NPC) cells by modulating caspase-dependent apoptotic pathway. In the present study, the mechanism by which GW501516 induces apoptosis was explored from the perspective of microRNA (miRNA) expression. Among the assayed miRNAs that were involved in regulating the expression of antiapoptotic protein Bcl-2, miR-206 was increased significantly and specifically by GW501516 in C666-1 cells at both the in vitro level and at the in vivo xenograft samples. The induction on miR-206 expression caused by GW501516 was capable of being antagonized by the PPARβ/δ antagonist GSK3787 and AMPK antagonist dorsomorphin in C666-1 cells. GW501516’s suppression on the growth and apoptosis of C666-1 cells was found to be dependent on the presence of miR-206. miR-206 overexpression resulted in suppressed proliferation and colony formation ability, and further triggered increased apoptosis in C666-1 cells in a caspase-dependent manner. The expression of cleaved caspase 3 and caspase 9, and the ratio of Bax to Bcl-2 were elevated remarkably by miR-206. Consistent with the in vitro result, miR-206 was corroborated to suppress the ectopic NPC xenograft tumorigenesis that derived from the C666-1 cells in BALB/c nu/nu mice. Taken together, the current data demonstrated that miR-206 plays a critical role in the direct apoptosis-promoting effect induced by GW501516 in C666-1 cells. Furthermore, the emphasized tumor-suppressive role of miR-206 in the C666-1 cells indicates that it has the potential to provide a new therapeutic approach for the undifferentiated NPC.


2019 ◽  
Vol 20 (17) ◽  
pp. 4225 ◽  
Author(s):  
Farzane Sivandzade ◽  
Luca Cucullo

Tobacco smoking (TS) is one of the most addictive habit sand a main public health hazards, impacting the vascular endothelium through oxidative stress (OS) stimuli, exposure to nicotine, and smoking-induced inflammation in a dose-dependent manner. Increasing evidence also suggested that TS increases glucose intolerance and the risk factor of developing type-2 diabetes mellitus (2DM), which, along with TS, is connected to blood–brain barrier (BBB) injuries, and heightens the risk of cerebrovascular disorders. Although the exact mechanism of rosiglitazone (RSG) is unknown, our previous in vitro work showed how RSG, an oral anti-diabetic drug belonging to the family of thiazolidinedione class, can protect BBB integrity through enhancement of nuclear factor erythroid 2-related factor (Nrf2) activity. Herein, we have validated the protective role of rosiglitazone against TS-induced BBB impairment in vivo. Our results revealed that RSG as a peroxisome proliferator-activated receptor gamma (PPARγ), activates counteractive mechanisms primarily associated with the upregulation of Nrf2 and PPARγ pathways which reduce TS-dependent toxicity at the cerebrovascular level. In line with these findings, our results show that RSG reduces inflammation and protects BBB integrity. In conclusion, RSG offers a novel and promising therapeutic application to reduce TS-induced cerebrovascular dysfunction through activation of the PPARγ-dependent and/or PPARγ-independent Nrf2 pathway.


2006 ◽  
Vol 290 (5) ◽  
pp. E916-E924 ◽  
Author(s):  
Juan Kong ◽  
Yan Chun Li

We have investigated the molecular mechanism whereby 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibits adipogenesis in vitro. 1,25(OH)2D3 blocks 3T3-L1 cell differentiation into adipocytes in a dose-dependent manner; however, the inhibition is ineffective 24–48 h after the differentiation is initiated, suggesting that 1,25(OH)2D3 inhibits only the early events of the adipogenic program. Treatment of 3T3-L1 cells with 1,25(OH)2D3 does not block the mitotic clonal expansion or C/EBPβ induction; rather, 1,25(OH)2D3 blocks the expression of C/EBPα, peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein-1, and other downstream adipocyte markers. The inhibition by 1,25(OH)2D3 is reversible, since removal of 1,25(OH)2D3 from the medium restores the adipogenic process with only a temporal delay. Interestingly, although the vitamin D receptor (VDR) protein is barely detectable in 3T3-L1 preadipocytes, its levels are dramatically increased during the early phase of adipogenesis, peaking at 4–8 h and subsiding afterward throughout the rest of the differentiation program; 1,25(OH)2D3 treatment appears to stabilize the VDR protein levels. Consistently, adenovirus-mediated overexpression of human (h) VDR in 3T3-L1 cells completely blocks the adipogenic program, confirming that VDR is inhibitory. Inhibition of adipocyte differentiation by 1,25(OH)2D3 is ameliorated by troglitazone, a specific PPARγ antagonist; conversely, hVDR partially suppresses the transacting activity of PPARγ but not of C/EBPβ or C/EBPα. Moreover, 1,25(OH)2D3 markedly suppresses C/EBPα and PPARγ mRNA levels in mouse epididymal fat tissue culture. Taken together, these data indicate that the blockade of 3T3-L1 cell differentiation by 1,25(OH)2D3 occurs at the postclonal expansion stages and involves direct suppression of C/EBPα and PPARγ upregulation, antagonization of PPARγ activity, and stabilization of the inhibitory VDR protein.


Sign in / Sign up

Export Citation Format

Share Document