scholarly journals The Nuclear Receptor Cofactor Receptor-Interacting Protein 140 Is a Positive Regulator of Amphiregulin Expression and Cumulus Cell-Oocyte Complex Expansion in the Mouse Ovary

Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2923-2932 ◽  
Author(s):  
Jaya Nautiyal ◽  
Jennifer H. Steel ◽  
Meritxell M. Rosell ◽  
Evanthia Nikolopoulou ◽  
Kevin Lee ◽  
...  

The nuclear receptor cofactor receptor-interacting protein 140 (RIP140) is essential for cumulus cell-oocyte complex (COC) expansion, follicular rupture, and oocyte release during ovulation. The expression of many genes necessary for COC expansion is impaired in the absence of RIP140, but the studies herein document that their expression can be restored and COC expansion rescued by treatment with the epidermal growth factor (EGF)-like factor amphiregulin (AREG) both in vitro and in vivo. We demonstrate by several approaches that RIP140 is required for the expression of the EGF-like factors in granulosa cells, but the dependence of genes involved in cumulus expansion, including Ptgs2 Has2, Tnfaip6, and Ptx3, is indirect because they are induced by AREG. Treatment of granulosa cells with forskolin to mimic the effects of LH increases AREG promoter activity in a RIP140-dependent manner that 1) requires an intact cAMP response element in the proximal promoter region of the Areg gene and 2) involves its actions as a coactivator for cAMP response element-binding protein/c-Jun transcription factors. Although human chorionic gonadotropin and AREG coadministration is sufficient to restore ovulation fully in RIP140 heterozygous mice in vivo, both follicular rupture and ovulation remain impaired in the RIP140 null mice. Thus, we conclude that although the level of RIP140 expression in the ovary is a crucial factor required for the transient expression of EGF-like factors necessary for cumulus expansion, it also plays a role in other signaling pathways that induce follicular rupture.

Reproduction ◽  
2012 ◽  
Vol 144 (2) ◽  
pp. 195-207 ◽  
Author(s):  
Matthew Cotterill ◽  
Sally L Catt ◽  
Helen M Picton

The response of Graafian follicles to pre-ovulatory surge levels of FSH and LH in vivo triggers the terminal differentiation of granulosa cells and oocyte maturation. In polyovular species, the LH-driven signalling uses the epidermal growth factor (EGF)-like ligands AREG, EREG and BTC to promote oocyte maturation and cumulus expansion. This experimental series used a physiologically relevant ovine in vitro maturation (IVM) system to evaluate the impact of exposure to pre-ovulatory levels (100 ng/ml) of LH and FSH on ovine cumulus cell expression of EGF-like ligands in vitro. The serum-free sheep IVM system supported high levels (91.4%) of gonadotrophin-induced maturation of cumulus-enclosed oocytes and embryo development to the blastocyst stage (34.5%). Results were equivalent to a serum-based IVM system (85.1% IVM, 25.8% blastocyst rate; P>0.05) but were significantly different (P<0.05) to serum-free medium without gonadotrophins (69.5% IVM; 8.0% blastocyst rate). Ovine BTC was cloned and sequenced. Gonadotrophin-induced AREG, EREG, BTC and EGFR expressions were quantified in cumulus and mural granulosa cells during IVM. A rapid induction of AREG expression was apparent in both cell types within 30 min of gonadotrophin exposure in vitro. LHCGR (LHR) was detected in mural cells and FSHR in both cumulus and mural granulosa cells. The data confirm the involvement of AREG and EGFR during gonadotrophin-induced cumulus expansion, oocyte maturation and the acquisition of developmental competence by sheep oocytes matured in vitro.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hong Feng ◽  
Junling Gu ◽  
Fang Gou ◽  
Wei Huang ◽  
Chenlin Gao ◽  
...  

While inflammation is considered a central component in the development in diabetic nephropathy, the mechanism remains unclear. The NLRP3 inflammasome acts as both a sensor and a regulator of the inflammatory response. The NLRP3 inflammasome responds to exogenous and endogenous danger signals, resulting in cleavage of procaspase-1 and activation of cytokines IL-1β, IL-18, and IL-33, ultimately triggering an inflammatory cascade reaction. This study observed the expression of NLRP3 inflammasome signaling stimulated by high glucose, lipopolysaccharide, and reactive oxygen species (ROS) inhibitor N-acetyl-L-cysteine in glomerular mesangial cells, aiming to elucidate the mechanism by which the NLRP3 inflammasome signaling pathway may contribute to diabetic nephropathy. We found that the expression of thioredoxin-interacting protein (TXNIP), NLRP3, and IL-1βwas observed by immunohistochemistry in vivo. Simultaneously, the mRNA and protein levels of TXNIP, NLRP3, procaspase-1, and IL-1βwere significantly induced by high glucose concentration and lipopolysaccharide in a dose-dependent and time-dependent manner in vitro. This induction by both high glucose and lipopolysaccharide was significantly inhibited by N-acetyl-L-cysteine. Our results firstly reveal that high glucose and lipopolysaccharide activate ROS/TXNIP/ NLRP3/IL-1βinflammasome signaling in glomerular mesangial cells, suggesting a mechanism by which inflammation may contribute to the development of diabetic nephropathy.


2019 ◽  
Vol 3 (12) ◽  
pp. 2326-2340 ◽  
Author(s):  
Luce Perie ◽  
Narendra Verma ◽  
Lingyan Xu ◽  
Xinran Ma ◽  
Elisabetta Mueller

Abstract Zinc finger factors are implicated in a variety of cellular processes, including adipose tissue differentiation and thermogenesis. We have previously demonstrated that zinc finger protein 638 (ZNF638) is a transcriptional coactivator acting as an early regulator of adipogenesis in vitro. In this study, we show, to our knowledge for the first time, that, in vivo, ZNF638 abounds selectively in mature brown and subcutaneous fat tissues and in fully differentiated thermogenic adipocytes. Furthermore, gene expression studies revealed that ZNF638 is upregulated by cAMP modulators in vitro and by cold exposure and by pharmacological stimulation of β-adrenergic signaling in vivo. In silico analysis of the upstream regulatory region of the ZNF638 gene identified two putative cAMP response elements within 500 bp of the ZNF638 transcription start site. Detailed molecular analysis involving EMSA and chromatin immunoprecipitation assays demonstrated that cAMP response element binding protein (CREB) binds to these cAMP response element regions of the ZNF638 promoter, and functional studies revealed that CREB is necessary and sufficient to regulate the levels of ZNF638 transcripts. Taken together, these results demonstrate that ZNF638 is selectively expressed in mature thermogenic adipocytes and tissues and that its induction in response to classic stimuli that promote heat generation is mediated via CREB signaling, pointing to a possible novel role of ZNF638 in brown and beige fat tissues.


2020 ◽  
Vol 117 (19) ◽  
pp. 10246-10253 ◽  
Author(s):  
Xin Yang ◽  
Shun Deng ◽  
Xuegao Wei ◽  
Jing Yang ◽  
Qiannan Zhao ◽  
...  

The evolution of insect resistance to pesticides poses a continuing threat to agriculture and human health. While much is known about the proximate molecular and biochemical mechanisms that confer resistance, far less is known about the regulation of the specific genes/gene families involved, particularly by trans-acting factors such as signal-regulated transcription factors. Here we resolve in fine detail the trans-regulation of CYP6CM1, a cytochrome P450 that confers resistance to neonicotinoid insecticides in the whitefly Bemisia tabaci, by the mitogen-activated protein kinase (MAPK)-directed activation of the transcription factor cAMP-response element binding protein (CREB). Reporter gene assays were used to identify the putative promoter of CYP6CM1, but no consistent polymorphisms were observed in the promoter of a resistant strain of B. tabaci (imidacloprid-resistant, IMR), which overexpresses this gene, compared to a susceptible strain (imidacloprid-susceptible, IMS). Investigation of potential trans-acting factors using in vitro and in vivo assays demonstrated that the bZIP transcription factor CREB directly regulates CYP6CM1 expression by binding to a cAMP-response element (CRE)-like site in the promoter of this gene. CREB is overexpressed in the IMR strain, and inhibitor, luciferase, and RNA interference assays revealed that a signaling pathway of MAPKs mediates the activation of CREB, and thus the increased expression of CYP6CM1, by phosphorylation-mediated signal transduction. Collectively, these results provide mechanistic insights into the regulation of xenobiotic responses in insects and implicate both the MAPK-signaling pathway and a transcription factor in the development of pesticide resistance.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ming Gao ◽  
Guijie Guo ◽  
Jinzhou Huang ◽  
Jake A. Kloeber ◽  
Fei Zhao ◽  
...  

Abstract Human C-terminal binding protein (CtBP)–interacting protein (CtIP) is a central regulator to initiate DNA end resection and homologous recombination (HR). Several studies have shown that post-translational modifications control the activity or expression of CtIP. However, it remains unclear whether and how cells restrain CtIP activity in unstressed cells and activate CtIP when needed. Here, we identify that USP52 directly interacts with and deubiquitinates CtIP, thereby promoting DNA end resection and HR. Mechanistically, USP52 removes the ubiquitination of CtIP to facilitate the phosphorylation and activation of CtIP at Thr-847. In addition, USP52 is phosphorylated by ATM at Ser-1003 after DNA damage, which enhances the catalytic activity of USP52. Furthermore, depletion of USP52 sensitizes cells to PARP inhibition in a CtIP-dependent manner in vitro and in vivo. Collectively, our findings reveal the key role of USP52 and the regulatory complexity of CtIP deubiquitination in DNA repair.


2015 ◽  
Vol 45 (4) ◽  
pp. 212-225 ◽  
Author(s):  
J. Nevoral ◽  
M. Orsák ◽  
P. Klein ◽  
J. Petr ◽  
M. Dvořáková ◽  
...  

Abstract Cumulus expansion of the cumulus-oocyte complex is necessary for meiotic maturation and acquiring developmental competence. Cumulus expansion is based on extracellular matrix synthesis by cumulus cells. Hyaluronic acid is the most abundant component of this extracellular matrix. Cumulus expansion takes place during meiotic oocyte maturation under in vivo and in vitro conditions. Quantification and measurement of cumulus expansion intensity is one possible method of determining oocyte quality and optimizing conditions for in vitro cultivation. Currently, subjective methods of expanded area and more exact cumulus expansion measurement by hyaluronic acid assessment are available. Among the methods of hyaluronic acid measurement is the use of radioactively labelled synthesis precursors. Alternatively, immunological and analytical methods, including enzyme-linked immunosorbent assay (ELISA), spectrophotometry, and high-performance liquid chromatography (HPLC) in UV light, could be utilized. The high sensitivity of these methods could provide a precise analysis of cumulus expansion without the use of radioisotopes. Therefore, the aim of this review is to summarize and compare available approaches of cumulus expansion measurement, respecting special biological features of expanded cumuli, and to suggest possible solutions for exact cumulus expansion analysis.


Reproduction ◽  
2014 ◽  
Vol 148 (6) ◽  
pp. H1-H9 ◽  
Author(s):  
Mai Shinomura ◽  
Kasane Kishi ◽  
Ayako Tomita ◽  
Miyuri Kawasumi ◽  
Hiromi Kanezashi ◽  
...  

Cell ablation technology is useful for studying specific cell lineages in a developing organ in vivo. Herein, we established a novel anti-Müllerian hormone (AMH)-toxin receptor-mediated cell knockout (Treck) mouse line, in which the diphtheria toxin (DT) receptor was specifically activated in Sertoli and granulosa cells in postnatal testes and ovaries respectively. In the postnatal testes of Amh-Treck transgenic (Tg) male mice, DT injection induced a specific loss of the Sertoli cells in a dose-dependent manner, as well as the specific degeneration of granulosa cells in the primary and secondary follicles caused by DT injection in Tg females. In the testes with depletion of Sertoli cell, germ cells appeared to survive for only several days after DT treatment and rapidly underwent cell degeneration, which led to the accumulation of a large amount of cell debris within the seminiferous tubules by day 10 after DT treatment. Transplantation of exogenous healthy Sertoli cells following DT treatment rescued the germ cell loss in the transplantation sites of the seminiferous epithelia, leading to a partial recovery of the spermatogenesis. These results provide not only in vivo evidence of the crucial role of Sertoli cells in the maintenance of germ cells, but also show that the Amh-Treck Tg line is a useful in vivo model of the function of the supporting cell lineage in developing mammalian gonads.


1996 ◽  
Vol 8 (6) ◽  
pp. 935 ◽  
Author(s):  
AW Schuetz ◽  
DG Whittingham ◽  
R Snowden

The cell cycle characteristics of mouse cumulus granulosa cells were determined before, during and following their expansion and mucification in vivo and in vitro. Cumulus-oocyte complexes (COC) were recovered from ovarian follicles or oviducts of prepubertal mice previously injected with pregnant mare serum gonadotrophin (PMSG) or a mixture of PMSG and human chorionic gonadotrophin (PMSG+hCG) to synchronize follicle differentiation and ovulation. Cell cycle parameters were determined by monitoring DNA content of cumulus cell nuclei, collected under rigorously controlled conditions, by flow cytometry. The proportion of cumulus cells in three cell cycle-related populations (G0/G1; S; G2/M) was calculated before and after exposure to various experimental conditions in vivo or in vitro. About 30% of cumulus cells recovered from undifferentiated (compact) COC isolated 43-45 h after PMSG injections were in S phase and 63% were in G0/G1 (2C DNA content). Less than 10% of the cells were in the G2/M population. Cell cycle profiles of cumulus cells recovered from mucified COC (oviducal) after PMSG+hCG-induced ovulation varied markedly from those collected before hCG injection and were characterized by the relative absence of S-phase cells and an increased proportion of cells in G0/G1. Cell cycle profiles of cumulus cells collected from mucified COC recovered from mouse ovarian follicles before ovulation (9-10 h after hCG) were also characterized by loss of S-phase cells and an increased G0/G1 population. Results suggest that changes in cell cycle parameters in vivo are primarily mediated in response to physiological changes that occur in the intrafollicular environment initiated by the ovulatory stimulus. A similar lack of S-phase cells was observed in mucified cumulus cells collected 24 h after exposure in vitro of compact COC to dibutyryl cyclic adenosine monophosphate (DBcAMP), follicle-stimulating hormone or epidermal growth factor (EGF). Additionally, the proportion of cumulus cells in G2/M was enhanced in COC exposed to DBcAMP, suggesting that cell division was inhibited under these conditions. Thus, both the G1-->S-phase and G2-->M-phase transitions in the cell cycle appear to be amenable to physiological regulation. Time course studies revealed dose-dependent changes in morphology occurred within 6 h of exposure in vitro of COC to EGF or DBcAMP. Results suggest that the disappearance of the S-phase population is a consequence of a decline in the number of cells beginning DNA synthesis and exit of cells from the S phase following completion of DNA synthesis. Furthermore, loss of proliferative activity in cumulus cells appears to be closely associated with COC expansion and mucification, whether induced under physiological conditions in vivo or in response to a range of hormonal stimuli in vitro. The observations indicate that several signal-transducing pathways mediate changes in cell cycle parameters during cumulus cell differentiation.


2000 ◽  
Vol 20 (9) ◽  
pp. 2951-2958 ◽  
Author(s):  
Iphigenia Tzameli ◽  
Pavlos Pissios ◽  
Erin G. Schuetz ◽  
David D. Moore

ABSTRACT A wide range of xenobiotic compounds are metabolized by cytochrome P450 (CYP) enzymes, and the genes that encode these enzymes are often induced in the presence of such compounds. Here, we show that the nuclear receptor CAR can recognize response elements present in the promoters of xenobiotic-responsive CYP genes, as well as other novel sites. CAR has previously been shown to be an apparently constitutive transactivator, and this constitutive activity is inhibited by androstanes acting as inverse agonists. As expected, the ability of CAR to transactivate the CYP promoter elements is blocked by the inhibitory inverse agonists. However, CAR transactivation is increased in the presence of 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), the most potent known member of the phenobarbital-like class of CYP-inducing agents. Three independent lines of evidence demonstrate that TCPOBOP is an agonist ligand for CAR. The first is that TCPOBOP acts in a dose-dependent manner as a direct agonist to compete with the inhibitory effect of the inverse agonists. The second is that TCPOBOP acts directly to stimulate coactivator interaction with the CAR ligand binding domain, both in vitro and in vivo. The third is that mutations designed to block ligand binding block not only the inhibitory effect of the androstanes but also the stimulatory effect of TCPOBOP. Importantly, these mutations do not block the apparently constitutive transactivation by CAR, suggesting that this activity is truly ligand independent. Both its ability to target CYP genes and its activation by TCPOBOP demonstrate that CAR is a novel xenobiotic receptor that may contribute to the metabolic response to such compounds.


Sign in / Sign up

Export Citation Format

Share Document