Neurointermediate pituitary lobe cells synthesize and release interleukin-6 in vitro: effects of lipopolysaccharide and interleukin-1 beta.

Endocrinology ◽  
1994 ◽  
Vol 135 (2) ◽  
pp. 556-563 ◽  
Author(s):  
B L Spangelo ◽  
P D deHoll ◽  
L Kalabay ◽  
B R Bond ◽  
P Arnaud
Blood ◽  
1990 ◽  
Vol 76 (10) ◽  
pp. 1972-1979 ◽  
Author(s):  
MA Brach ◽  
B Lowenberg ◽  
L Mantovani ◽  
U Schwulera ◽  
R Mertelsmann ◽  
...  

Abstract We have examined the in vitro effects of recombinant human (rh) interleukin-1 (IL-1) on the growth of purified megakaryoblasts obtained from patients with acute megakaryoblastic leukemia. We demonstrate that both IL-1 alpha and IL-1 beta treatment of these cells led to stimulation of DNA synthesis (as shown by increase of 3H-thymidine incorporation up to 35-fold) and also resulted in colony formation of leukemic megakaryoblasts. However, the stimulatory effect of IL-1 was dependent on endogenous production of IL-6, because addition of neutralizing monoclonal antibody (MoAb) to IL-6 abrogated the stimulatory activity of IL-1. In contrast, neutralizing MoAbs to granulocyte (G)-colony stimulating factor (CSF), granulocyte-macrophage (GM)-CSF, and macrophage (M)-CSF failed to counteract the growth- enhancing effects of IL-1. Leukemic megakaryoblasts accumulated IL-6 mRNA and released IL-6 protein into their culture supernatant when exposed to rh IL-1 but failed to disclose transcripts for G-, GM-, and M-CSF under these conditions. Analysis of IL-6 receptor (IL-6R) transcript levels demonstrated that megakaryoblasts constitutively expressed IL-6R mRNA and that these transcripts are down-regulated to undetectable levels upon exposure to IL-1 and IL-6. Increase of 3H- thymidine incorporation by megakaryoblasts could be duplicated by exogenous IL-6 that could be blocked by neutralizing MoAb to IL-6. In conclusion, our results suggest that leukemic megakaryoblasts could produce and secrete IL-6, and express IL-6R, and that the growth- enhancing effect of IL-1 on these cells is indirect, via production of IL-6 by leukemic cells.


2002 ◽  
Vol 11 (5) ◽  
pp. 467-475 ◽  
Author(s):  
Cüneyt Özaktay ◽  
John Cavanaugh ◽  
Ibrahim Asik ◽  
Joyce DeLeo ◽  
James Weinstein

Author(s):  
Dan Smelter ◽  
Mary Hayney ◽  
George Sakoulas ◽  
Warren Rose

Cefazolin and ertapenem has been shown to be an effective salvage regimen for refractory methicillin-susceptible Staphylococcus aureus bacteremia. Our findings suggest cefazolin plus ertapenem in vitro stimulates interleukin-1β release from peripheral blood monocytes both with and without S. aureus presence. This IL-1β augmentation was primarily driven by ertapenem. These findings support further exploration of cefazolin plus ertapenem in MSSA bacteremia and may partially explain its marked potency in vivo despite modest synergy in vitro .


Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 461-471 ◽  
Author(s):  
S Navarro ◽  
N Debili ◽  
JP Le Couedic ◽  
B Klein ◽  
J Breton-Gorius ◽  
...  

Abstract Interleukin-6 (IL-6) is a pleiotropic cytokine that plays an important role in the megakaryocytic differentiation. Recently, we have observed that IL-6 is synthesized by several human cell lines with megakaryocytic features. In this study, we have investigated whether a similar phenomenon occurs during normal megakaryocytic differentiation. Human megakaryocytes (MK) were obtained by culturing normal marrow in liquid culture with aplastic plasma (AP). First, an IL-6 secretion in bone marrow culture enriched in MK as well as in purified MK populations was demonstrated by a biologic assay. Second, IL-6 mRNA was detected in a purified population of MK by the polymerase chain reaction and dot blot analysis. IL-6 mRNA and protein were undetectable in platelets. Third, in situ hybridization procedure demonstrated the presence of IL-6 mRNA in individual immature MK. Fourth, IL-6 protein was detected in MK at the unicellular level by an immunoalkaline phosphatase technique using a monoclonal antibody against IL-6. Furthermore, the presence of IL-6 receptor (IL-6-R) on MK was demonstrated by in situ hybridization using an IL-6-R probe and in situ autoradiography after binding with [125I]-labeled recombinant IL-6. The IL-6 endogenously produced in liquid cultures containing normal human plasma or AP was subsequently neutralized. This resulted in a 50% decrease of the MK growth with a minor shift in the ploidy distribution toward lower values. In semisolid cultures the addition of anti-IL-6 antibodies led to a 42% decrease in colony number in cultures stimulated by IL-3 but not in other conditions of culture. These results suggest that normal human megakaryocytopoiesis might be regulated in part by an IL-6 autocrine loop.


Sign in / Sign up

Export Citation Format

Share Document