scholarly journals Synonymous but Not Silent: A Synonymous VHL Variant in Exon 2 Confers Susceptibility to Familial Pheochromocytoma and von Hippel-Lindau Disease

2019 ◽  
Vol 104 (9) ◽  
pp. 3826-3834 ◽  
Author(s):  
Shahida K Flores ◽  
Ziming Cheng ◽  
Angela M Jasper ◽  
Keiko Natori ◽  
Takahiro Okamoto ◽  
...  

Abstract Context von Hippel-Lindau (VHL) disease, comprising renal cancer, hemangioblastoma, and/or pheochromocytoma (PHEO), is caused by missense or truncating variants of the VHL tumor-suppressor gene, which is involved in degradation of hypoxia-inducible factors (HIFs). However, the role of synonymous VHL variants in the disease is unclear. Objective We evaluated a synonymous VHL variant in patients with familial PHEO or VHL disease without a detectable pathogenic VHL mutation. Design We performed genetic and transcriptional analyses of leukocytes and/or tumors from affected and unaffected individuals and evaluated VHL splicing in existing cancer databases. Results We identified a synonymous VHL variant (c.414A>G, p.Pro138Pro) as the driver event in five independent individuals/families with PHEOs or VHL syndrome. This variant promotes exon 2 skipping and hence, abolishes expression of the full-length VHL transcript. Exon 2 spans the HIF-binding domain required for HIF degradation by VHL. Accordingly, PHEOs carrying this variant display HIF hyperactivation typical of VHL loss. Moreover, other exon 2 VHL variants from the The Cancer Genome Atlas pan-cancer datasets are biased toward expression of a VHL transcript that excludes this exon, supporting a broader impact of this spliced variant. Conclusion A recurrent synonymous VHL variant (c.414A>G, p.Pro138Pro) confers susceptibility to PHEO and VHL disease through splice disruption, leading to VHL dysfunction. This finding indicates that certain synonymous VHL variants may be clinically relevant and should be considered in genetic testing and surveillance settings. The observation that other coding VHL variants can exclude exon 2 suggests that dysregulated splicing may be an underappreciated mechanism in VHL-mediated tumorigenesis.

2020 ◽  
Vol 7 (5) ◽  
pp. 1684
Author(s):  
Mrinal Bhuyan ◽  
Debadatta Saha ◽  
Basanta Kumar Baishya ◽  
Ashish Ghanghoria

Von Hippel-Lindau (VHL) disease is a rare autosomal dominant syndrome manifested by a spectrum of tumours in the central nervous system (CNS) and other visceral organs. We herein report a case of 35 years aged newly diagnosed diabetic female patient presented with headache, gait instability, loss of vision in both eyes, left sided hearing impairment and subsequently diagnosed to have VHL disease. The pathophysiology involves the inactivation of the VHL tumour suppressor gene. Early recognition and treatment remains the mainstay of management. Even many years after the complete tumour excision, newer neoplasms may develop. Increasing knowledge about the molecular enabled us to investigate the role of anti-angiogenic drugs. Continuous surveillance at regular interval must be conducted in patients with VHL disease. 


2005 ◽  
Vol 25 (8) ◽  
pp. 3163-3172 ◽  
Author(s):  
Erinn B. Rankin ◽  
Debra F. Higgins ◽  
Jacqueline A. Walisser ◽  
Randall S. Johnson ◽  
Christopher A. Bradfield ◽  
...  

ABSTRACT Patients with germ line mutations in the VHL tumor suppressor gene are predisposed to the development of highly vascularized tumors within multiple tissues. Loss of pVHL results in constitutive activation of the transcription factors HIF-1 and HIF-2, whose relative contributions to the pathogenesis of the VHL phenotype have yet to be defined. In order to examine the role of HIF in von Hippel-Lindau (VHL)-associated vascular tumorigenesis, we utilized Cre-loxP-mediated recombination to inactivate hypoxia-inducible factor-1α (Hif-1α) and arylhydrocarbon receptor nuclear translocator (Arnt) genes in a VHL mouse model of cavernous liver hemangiomas and polycythemia. Deletion of Hif-1α did not affect the development of vascular tumors and polycythemia, nor did it suppress the increased expression of vascular endothelial growth factor (Vegf) and erythropoietin (Epo). In contrast, phosphoglycerokinase (Pgk) expression was substantially decreased, providing evidence for target gene-dependent functional redundancy between different Hif transcription factors. Inactivation of Arnt completely suppressed the development of hemangiomas, polycythemia, and Hif-induced gene expression. Here, we demonstrate genetically that the development of VHL-associated vascular tumors in the liver depends on functional ARNT. Furthermore, we provide evidence that individual HIF transcription factors may play distinct roles in the development of specific VHL disease manifestations.


2015 ◽  
Vol 139 (2) ◽  
pp. 263-268 ◽  
Author(s):  
Clarissa Cassol ◽  
Ozgur Mete

von Hippel–Lindau (VHL) disease is an autosomal dominant disorder caused by heterozygous mutations in the VHL tumor suppressor gene that is characterized by the occurrence of multiple endocrine and nonendocrine lesions. This review focuses on the endocrine manifestations of VHL disease. Pancreatic neuroendocrine proliferations (ductuloinsular complexes, islet dysplasia, endocrine microadenoma, and neuroendocrine tumors), pheochromocytomas, and extra-adrenal paragangliomas are important endocrine manifestations of VHL disease. They frequently display characteristic clinical, biochemical, and histopathologic features that, although not pathognomonic, can be helpful in suggesting VHL disease as the underlying etiology and distinguishing these tumors from sporadic cases. Recent improvements in treatment and outcomes of renal cell carcinomas have allowed pancreatic neuroendocrine tumors to emerge as a significant source of metastatic disease, making the accurate recognition and classification of these neoplasms by the pathologist of utmost importance to determine prognosis, treatment, and follow-up strategies for affected patients.


Blood ◽  
2018 ◽  
Vol 132 (5) ◽  
pp. 469-483 ◽  
Author(s):  
Marion Lenglet ◽  
Florence Robriquet ◽  
Klaus Schwarz ◽  
Carme Camps ◽  
Anne Couturier ◽  
...  

Key Points Mutations in a VHL cryptic exon may be found in patients with familial erythrocytosis or VHL disease. Synonymous mutations in VHL exon 2 may induce exon skipping and cause familial erythrocytosis or VHL disease.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Tarık Esen ◽  
Ömer Acar ◽  
Ahmet Tefekli ◽  
Ahmet Musaoğlu ◽  
İzzet Rozanes ◽  
...  

Pheochromocytomas can be a part of familial neoplastic syndromes, in which case they tend to be multiple and involve both adrenal glands. Therefore, sparing adrenocortical function represents a major concern while dealing with these hereditary lesions. Herein, we describe the clinical characteristics and the management strategy of a patient with von Hippel-Lindau (VHL) disease who had multiple, bilateral pheochromocytomas as well as bilateral renal masses, pancreatic masses, and a paracaval mass. Only a portion of the left adrenal gland has remained in situ after two consecutive open surgeries and a percutaneous radiofrequency ablation which have been performed to treat the various components of this syndrome. No adrenal or extra-adrenal pheochromocytoma recurrences have been detected during a follow-up period of more than 2 years. Pancreatic and adrenal functions were normal throughout the postoperative period and never necessitated any replacement therapy. Adrenal cortex-sparing surgery is a valid option for VHL disease patients who present with synchronous bilateral adrenal pheochromocytomas.


2018 ◽  
Vol 111 (7) ◽  
pp. 664-674 ◽  
Author(s):  
Rongqiang Yang ◽  
Steven W Li ◽  
Zirong Chen ◽  
Xin Zhou ◽  
Wei Ni ◽  
...  

Abstract Background The LKB1 tumor suppressor gene is commonly inactivated in non-small cell lung carcinomas (NSCLC), a major form of lung cancer. Targeted therapies for LKB1-inactivated lung cancer are currently unavailable. Identification of critical signaling components downstream of LKB1 inactivation has the potential to uncover rational therapeutic targets. Here we investigated the role of INSL4, a member of the insulin/IGF/relaxin superfamily, in LKB1-inactivated NSCLCs. Methods INSL4 expression was analyzed using global transcriptome profiling, quantitative reverse transcription PCR, western blotting, enzyme-linked immunosorbent assay, and RNA in situ hybridization in human NSCLC cell lines and tumor specimens. INSL4 gene expression and clinical data from The Cancer Genome Atlas lung adenocarcinomas (n = 515) were analyzed using log-rank and Fisher exact tests. INSL4 functions were studied using short hairpin RNA (shRNA) knockdown, overexpression, transcriptome profiling, cell growth, and survival assays in vitro and in vivo. All statistical tests were two-sided. Results INSL4 was identified as a novel downstream target of LKB1 deficiency and its expression was induced through aberrant CRTC-CREB activation. INSL4 was highly induced in LKB1-deficient NSCLC cells (up to 543-fold) and 9 of 41 primary tumors, although undetectable in all normal tissues except the placenta. Lung adenocarcinomas from The Cancer Genome Atlas with high and low INSL4 expression (with the top 10th percentile as cutoff) showed statistically significant differences for advanced tumor stage (P < .001), lymph node metastasis (P = .001), and tumor size (P = .01). The INSL4-high group showed worse survival than the INSL4-low group (P < .001). Sustained INSL4 expression was required for the growth and viability of LKB1-inactivated NSCLC cells in vitro and in a mouse xenograft model (n = 5 mice per group). Expression profiling revealed INSL4 as a critical regulator of cell cycle, growth, and survival. Conclusions LKB1 deficiency induces an autocrine INSL4 signaling that critically supports the growth and survival of lung cancer cells. Therefore, aberrant INSL4 signaling is a promising therapeutic target for LKB1-deficient lung cancers.


2021 ◽  
Author(s):  
Wancheng Zhao ◽  
Lili Yin

Abstract Background: Hypoxia-related genes have been reported to play important roles in a variety of cancers. However, their roles in ovarian cancer (OC) have remained unknown. The aim of our research was to explore the significance of hypoxia-related genes in OC patients.Methods: In this study, 15 hypoxia-related genes were screened from The Cancer Genome Atlas (TCGA) database to group the ovarian cancer patients using the consensus clustering method. Principal component analysis (PCA) was performed to calculate the hypoxia score for each patient to quantify the hypoxic status. Results: The OC patients from TCGA-OV dataset were divided into two distinct hypoxia statuses (cluster.A and cluster.B) based on the expression level of the 15 hypoxia-related genes. Most hypoxia-related genes were expressed more highly in the cluster.A group than in the cluster.B group. We also found that patients in the cluster.A group exhibited higher expression of immune checkpoint-related genes, epithelial-mesenchymal transition-related genes, and immune activation-related genes, as well as elevated immune infiltrates. PCA algorithm indicated that patients in the cluster.A group had higher hypoxia scores than that in in the cluster.B group.Conclusions: In summary, our research elucidated the vital role of hypoxia-related genes in immune infiltrates of OC. Our investigation of hypoxic status may be able to improve the efficacy of immunotherapy for OC.


2019 ◽  
Vol 26 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Eva Baxter ◽  
Karolina Windloch ◽  
Greg Kelly ◽  
Jason S Lee ◽  
Frank Gannon ◽  
...  

Up to 80% of endometrial and breast cancers express oestrogen receptor alpha (ERα). Unlike breast cancer, anti-oestrogen therapy has had limited success in endometrial cancer, raising the possibility that oestrogen has different effects in both cancers. We investigated the role of oestrogen in endometrial and breast cancers using data from The Cancer Genome Atlas (TCGA) in conjunction with cell line studies. Using phosphorylation of ERα (ERα-pSer118) as a marker of transcriptional activation of ERα in TCGA datasets, we found that genes associated with ERα-pSer118 were predominantly unique between tumour types and have distinct regulators. We present data on the alternative and novel roles played by SMAD3, CREB-pSer133 and particularly XBP1 in oestrogen signalling in endometrial and breast cancer.


Author(s):  
Eamonn R. Maher

This chapter considers the clinical and molecular features of von Hippel–Lindau (VHL) disease (OMIM 193300) and mutations in succinate dehydrogenase subunit genes (SDHB (OMIM 115310), SDHC (OMIM 605373), and SDHD (OMIM 168000)). Both disorders are important causes of phaeochromocytoma and, in addition to having overlapping clinical phenotypes, also share some similarities in mechanisms of tumourigenesis.


Sign in / Sign up

Export Citation Format

Share Document