scholarly journals A Novel, C-Terminal Dominant Negative Mutation of the GR Causes Familial Glucocorticoid Resistance through Abnormal Interactions with p160 Steroid Receptor Coactivators

2002 ◽  
Vol 87 (6) ◽  
pp. 2658-2667 ◽  
Author(s):  
Alessandra Vottero ◽  
Tomoshige Kino ◽  
Herve Combe ◽  
Pierre Lecomte ◽  
George P. Chrousos

Primary cortisol resistance is a rare, inherited or sporadic form of generalized end-organ insensitivity to glucocorticoids. Here, we report a kindred in which affected members had a heterozygous T to G base substitution at nucleotide 2373 of exon 9α of the GR gene, causing substitution of Ile by Met at position 747. This mutation was located close to helix 12, at the C terminus of the ligand-binding domain, which has a pivotal role in the formation of activation function (AF)-2, a subdomain that interacts with p160 coactivators. The affinity of the mutant GR for dexamethasone was decreased by about 2-fold, and its transcriptional activity on the glucocorticoid-responsive mouse mammary tumor virus promoter was compromised by 20- to 30-fold. In addition, the mutant GR functioned as a dominant negative inhibitor of wild-type receptor-induced transactivation. The mutant GR through its intact AF-1 domain bound to a p160 coactivator, but failed to do so through its AF-2 domain. Overexpression of a p160 coactivator restored the transcriptional activity and reversed the negative transdominant activity of the mutant GR. Interestingly, green fluorescent protein (GFP)-fused GRαI747M had a slight delay in its translocation from the cytoplasm into the nucleus and formed coarser nuclear speckles than GFP-fused wild-type GRα. Similarly, a GFP-fused p160 coactivator had a distinctly different distribution in the nucleus in the presence of mutant vs. wild-type receptor, presenting also as coarser speckling. We conclude that the mutation at amino acid 747 of the GR causes familial, autosomal dominant glucocorticoid resistance by decreasing ligand binding affinity and transcriptional activity, and by exerting a negative transdominant effect on the wild-type receptor. The mutant receptor has an ineffective AF-2 domain, which leads to an abnormal interaction with p160 coactivators and a distinct nuclear distribution of both.

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 651
Author(s):  
Hsiao-Cheng Tsai ◽  
Che-Hong Chen ◽  
Daria Mochly-Rosen ◽  
Yi-Chen Ethan Li ◽  
Min-Huey Chen

It is estimated that 560 million people carry an East Asian-specific ALDH2*2 dominant-negative mutation which leads to enzyme inactivation. This common ALDH2 polymorphism has a significant association with osteoporosis. We hypothesized that the ALDH2*2 mutation in conjunction with periodontal Porphyromonas gingivalis bacterial infection and alcohol drinking had an inhibitory effect on osteoblasts and bone regeneration. We examined the prospective association of ALDH2 activity with the proliferation and mineralization potential of human osteoblasts in vitro. The ALDH2 knockdown experiments showed that the ALDH2 knockdown osteoblasts lost their proliferation and mineralization capability. To mimic dental bacterial infection, we compared the dental bony defects in wild-type mice and ALDH2*2 knockin mice after injection with purified lipopolysaccharides (LPS), derived from P. gingivalis which is a bacterial species known to cause periodontitis. Micro-computed tomography (micro-CT) scan results indicated that bone regeneration was significantly affected in the ALDH2*2 knockin mice with about 20% more dental bony defects after LPS injection than the wild-type mice. Moreover, the ALDH2*2 knockin mutant mice had decreased osteoblast growth and more dental bone loss in the upper left jaw region after LPS injection. In conclusion, these results indicated that the ALDH2*2 mutation with alcohol drinking and chronic exposure to dental bacterial-derived toxin increased the risk of dental bone loss.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1083-1093
Author(s):  
Jeong-Ah Seo ◽  
Yajun Guan ◽  
Jae-Hyuk Yu

Abstract Asexual sporulation (conidiation) in the filamentous fungus Aspergillus nidulans requires the early developmental activator fluG. Loss of fluG results in the blockage of both conidiation and production of the mycotoxin sterigmatocystin (ST). To investigate molecular mechanisms of fluG-dependent developmental activation, 40 suppressors of fluG (SFGs) that conidiate without fluG have been isolated and characterized. Genetic analyses showed that an individual suppression is caused by a single second-site mutation, and that all sfg mutations but one are recessive. Pairwise meiotic crosses grouped mutations to four loci, 31 of them to sfgA, 6 of them to sfgB, and 1 each to sfgC and sfgD, respectively. The only dominant mutation, sfgA38, also mapped to the sfgA locus, suggesting a dominant negative mutation. Thirteen sfgA and 1 sfgC mutants elaborated conidiophores in liquid submerged culture, indicating that loss of either of these gene functions not only bypasses fluG function but also results in hyperactive conidiation. While sfg mutants show varying levels of restored conidiation, all recovered the ability to produce ST at near wild-type levels. The fact that at least four loci are defined by recessive sfg mutations indicates that multiple genes negatively regulate conidiation downstream of fluG and that the activity of fluG is required to remove such repressive effects.


2001 ◽  
Vol 114 (6) ◽  
pp. 1145-1153 ◽  
Author(s):  
C. Gao ◽  
S. Negash ◽  
H.S. Wang ◽  
D. Ledee ◽  
H. Guo ◽  
...  

The cyclin-dependent kinase member, Cdk5, is expressed in a variety of cell types, but neuron-specific expression of its activator, p35, is thought to limit its activity to neurons. Here we demonstrate that both Cdk5 and p35 are expressed in the human astrocytoma cell line, U373. Cdk5 and p35 are present in the detergent-insoluble cytoskeletal fraction of this cell line and Cdk5 localizes to filopodia and vinculin-rich regions of cell-matrix contact in lamellopodia. When exposed to a 46(o)C heat shock, U373 cells change shape, lose cell-matrix contacts and show increased levels of apoptosis. To test whether Cdk5 activation might play a role in these events, U373 cells were stably transfected with histidine-tagged or green fluorescent protein-tagged constructs of Cdk5 or a dominant negative mutation, Cdk5T33. Under normal growth conditions, growth characteristics of the stably transfected lines were indistinguishable from untransfected U373 cells and Cdk5 localization was not changed. However, when subjected to heat shock, cells stably transfected with Cdk5-T33 remained flattened, showed little loss of cell-matrix adhesion, and exhibited significantly lower levels of apoptosis. In contrast, cells that overexpressed wild-type Cdk5 showed morphological changes similar to those seen in untransfected U373 cells in response to heat shock and had significantly higher levels of apoptosis. Heat-shocked cells showed changes in p35 mobility and stability of the Cdk5/p35 complex consistent with endogenous Cdk5 activity. Together these findings suggest that endogenous Cdk5 activity may play a key role in regulating morphology, attachment, and apoptosis in U373 cells, and raise the possibility that Cdk5 may be a general regulator of cytoskeletal organization and cell adhesion in both neuronal and non-neuronal cells.


1999 ◽  
Vol 277 (6) ◽  
pp. C1202-C1209 ◽  
Author(s):  
Robert S. Haworth ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt ◽  
Metin Avkiran

The regulation of plasma membrane Na+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel protein kinase C- and phorbol ester-regulated kinase, was investigated. To determine the effect of PKD on NHE activity in vivo, intracellular pH (pHi) measurements were made in COS-7 cells by microepifluorescence using the pH indicator cSNARF-1. Cells were transfected with empty vector (control), wild-type PKD, or its kinase-deficient mutant PKD-K618M, together with green fluorescent protein (GFP). NHE activity, as reflected by the rate of acid efflux ( J H), was determined in single GFP-positive cells following intracellular acidification. Overexpression of wild-type PKD had no significant effect on J H(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control at pHi 7.0). In contrast, overexpression of PKD-K618M increased J H (5.31 ± 0.57 mM/min at pHi 7.0; P < 0.05 vs. control). Transfection with these constructs produced similar effects also in A-10 cells, indicating that native PKD may have an inhibitory effect on NHE in both cell types, which is relieved by a dominant-negative action of PKD-K618M. Exposure of COS-7 cells to phorbol ester significantly increased J H in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M (because basal J Hwas already near maximal). A fusion protein containing the cytosolic regulatory domain (amino acids 637–815) of NHE1 (the ubiquitous NHE isoform) was phosphorylated in vitro by wild-type PKD, but with low stoichiometry. These data suggest that PKD inhibits NHE activity, probably through an indirect mechanism, and represents a novel pathway in the regulation of the exchanger.


1999 ◽  
Vol 114 (5) ◽  
pp. 685-700 ◽  
Author(s):  
Thomas P. Flagg ◽  
Margaret Tate ◽  
Jean Merot ◽  
Paul A. Welling

Mutations in the inward rectifying renal K+ channel, Kir 1.1a (ROMK), have been linked with Bartter's syndrome, a familial salt-wasting nephropathy. One disease-causing mutation removes the last 60 amino acids (332–391), implicating a previously unappreciated domain, the extreme COOH terminus, as a necessary functional element. Consistent with this hypothesis, truncated channels (Kir 1.1a 331X) are nonfunctional. In the present study, the roles of this domain were systematically evaluated. When coexpressed with wild-type subunits, Kir 1.1a 331X exerted a negative effect, demonstrating that the mutant channel is synthesized and capable of oligomerization. Plasmalemma localization of Kir 1.1a 331X green fluorescent protein (GFP) fusion construct was indistinguishable from the GFP–wild-type channel, demonstrating that mutant channels are expressed on the oocyte plasma membrane in a nonconductive or locked-closed conformation. Incremental reconstruction of the COOH terminus identified amino acids 332–351 as the critical residues for restoring channel activity and uncovered the nature of the functional defect. Mutant channels that are truncated at the extreme boundary of the required domain (Kir 1.1a 351X) display marked inactivation behavior characterized by frequent occupancy in a long-lived closed state. A critical analysis of the Kir 1.1a 331X dominant negative effect suggests a molecular mechanism underlying the aberrant closed-state stabilization. Coexpression of different doses of mutant with wild-type subunits produced an intermediate dominant negative effect, whereas incorporation of a single mutant into a tetrameric concatemer conferred a complete dominant negative effect. This identifies the extreme COOH terminus as an important subunit interaction domain, controlling the efficiency of oligomerization. Collectively, these observations provide a mechanistic basis for the loss of function in one particular Bartter's-causing mutation and identify a structural element that controls open-state occupancy and determines subunit oligomerization. Based on the overlapping functions of this domain, we speculate that intersubunit interactions within the COOH terminus may regulate the energetics of channel opening.


2007 ◽  
Vol 21 (5) ◽  
pp. 1049-1065 ◽  
Author(s):  
Ellen H. Jeninga ◽  
Olivier van Beekum ◽  
Aalt D. J. van Dijk ◽  
Nicole Hamers ◽  
Brenda I. Hendriks-Stegeman ◽  
...  

Abstract The nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ plays a key role in the regulation of glucose and lipid metabolism in adipocytes by regulating their differentiation, maintenance, and function. A heterozygous mutation in the PPARG gene, which changes an arginine residue at position 425 into a cysteine (R425C), has been reported in a patient with familial partial lipodystrophy subtype 3 (FPLD3). The strong conservation of arginine 425 among nuclear receptors that heterodimerize with retinoic acid X receptor prompted us to investigate the functional consequences of the R425C mutation on PPARγ function. Here we show that this mutant displayed strongly reduced transcriptional activity compared with wild-type PPARγ, irrespective of cell type, promoter context, or ligand, whereas transrepression of nuclear factor-κB activity remained largely intact. Our data indicate that the reduced transcriptional activity of PPARγ R425C is not caused by impaired corepressor release, but due to reduced dimerization with retinoic acid X receptor α in combination with reduced ligand binding and subsequent coactivator binding. As a consequence of these molecular defects, the R425C mutant was less effective in inducing adipocyte differentiation. PPARγ R425C did not inhibit its wild-type counterpart in a dominant-negative manner, suggesting a haploinsufficiency mechanism in at least some FPLD3 patients. Using molecular dynamics simulations, substitution of R425 with cysteine is predicted to cause the formation of an alternative salt bridge. This structural change provides a likely explanation of how mutation of a single conserved residue in a patient with FPLD3 can disrupt the function of the adipogenic transcription factor PPARγ on multiple levels.


2003 ◽  
Vol 23 (22) ◽  
pp. 7957-7964 ◽  
Author(s):  
Sigal Weiss ◽  
Irit Gottfried ◽  
Itay Mayrose ◽  
Suvarna L. Khare ◽  
Mengqing Xiang ◽  
...  

ABSTRACT A mutation in the POU4F3 gene (BRN-3.1, BRN3C) is responsible for DFNA15 (MIM 602459), autosomal-dominant nonsyndromic hearing loss. POU4F3 is a member of the POU family of transcription factors and is essential for inner-ear hair cell maintenance. To test the potential effects of the human POU4F3 mutation, we performed a series of experiments in cell culture to mimic the human mutation. Mutant POU4F3 loses most of its transcriptional activity and most of its ability to bind to DNA and does not function in a dominant-negative manner. Moreover, whereas wild-type POU4F3 is found exclusively in the nucleus, our studies demonstrate that the mutant protein is localized both to the nucleus and the cytoplasm. Two nuclear localization signals were identified; both are essential for proper nuclear entry of POU4F3 protein. We found that the mutant protein half-life is longer than that of the wild type. We propose that the combination of defects caused by the mutation on the function of the POU4F3 transcription factor eventually leads to hair cell morbidity in affected family H members.


1996 ◽  
Vol 7 (6) ◽  
pp. 907-916 ◽  
Author(s):  
Y Omori ◽  
M Mesnil ◽  
H Yamasaki

We have characterized the function of connexin (Cx) 32 gene mutations found in X-linked dominant Charcot-Marie-Tooth disease with respect to their ability to form functional gap junctions among themselves and to inactivate wild-type Cx32 by a dominant negative mechanism. We prepared four types of Cx32 mutant cDNAs and transfected them into HeLa cells, which do not show detectable levels of gap junctional intercellular communication (GJIC), nor expression of any connexins examined. Cells transfected with the wild-type Cx32 gene, but not those transfected with three different base substitution mutations (i.e. Cys 60 to Phe, Val 139 to Met, and Arg 215 to Trp), restored GJIC. Unexpectedly, in cells transfected with a nonsense mutant at codon 220, there was also restored GJIC. When we double-transfected these mutant constructs into the HeLa cells that had already been transfected with the wild-type Cx32 gene and thus were GJIC proficient, three base substitution mutants inhibited GJIC, suggesting that these three mutants can eliminate the function of wild-type Cx32 in a dominant negative manner. The nonsense mutation at codon 220 did not show such a dominant negative effect. Since both mutant and wild-type Cx32 mRNAs were detected, but only poor Cx32 protein expression at cell-cell contact areas was observed in the double transfectants, it is suggested that certain mutants form nonfunctional chimeric connexons with wild-type connexins, which are not properly inserted into the cytoplasmic membrane.


2000 ◽  
Vol 113 (12) ◽  
pp. 2253-2265 ◽  
Author(s):  
M. Dumontier ◽  
P. Hocht ◽  
U. Mintert ◽  
J. Faix

The function of the highly homologous Rac1A, Rac1B, and Rac1C GTPases of the Dictyostelium Rac1 group was investigated. All three GTPases bound with an equal capacity to the IQGAP-related protein DGAP1, with a preference for the activated GTP-bound form. Strong overexpression of wild-type Rac1 GTPases N-terminally tagged with green fluorescent protein (GFP), predominantly induced the formation of numerous long filopodia. Remarkably, expression of the constitutively-activated GTPases resulted in dominant-negative phenotypes: these Rac1-V12 mutants completely lacked filopodia but formed numerous crown shaped structures resembling macropinosomes. Moreover, these mutants were severely impaired in cell motility, colony growth, phagocytosis, pinocytosis, cytokinesis and development. Transformants expressing constitutively-inactivated Rac1-N17 proteins were similar to wild-type cells, but displayed abundant and short filopodia and exhibited a moderate defect in cytokinesis. Taken together, our results indicate that the three GTPases play an identical role in signaling pathways and are key regulators of cellular activities that depend on the re-organization of the actin cytoskeleton in Dictyostelium.


2002 ◽  
Vol 70 (7) ◽  
pp. 3824-3832 ◽  
Author(s):  
David C. Willhite ◽  
Dan Ye ◽  
Steven R. Blanke

ABSTRACT The Helicobacter pylori vacuolating cytotoxin (VacA) binds and enters mammalian cells to induce cellular vacuolation. To investigate the quaternary structure of VacA within the intracellular environment where toxin cytotoxicity is elaborated, we employed fluorescence resonance energy transfer (FRET) microscopy. HeLa cells coexpressing full-length and truncated forms of VacA fused to cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP) were analyzed for FRET to indicate direct associations. These studies revealed that VacA-CFP and VacA-YFP interact within vacuolated cells, supporting the belief that monomer associations at an intracellular site are important for the toxin's vacuolating activity. In addition, the two fragments of proteolytically nicked VacA, p37 and p58, interact when coexpressed within mammalian cells. Because p37 and p58 function in trans when expressed separately within mammalian cells, these data suggest that the mechanism by which these two fragments induce vacuolation requires direct association. FRET microscopy also demonstrated interactions between mutant forms of VacA, as well as wild-type VacA with mutant forms of the toxin within vacuolated cells. Finally, a dominant-negative form of the toxin directly associates with wild-type VacA in cells where vacuolation was not detectable, suggesting that the formation of complexes comprising wild-type and dominant-negative forms of toxin acts to block intracellular toxin function.


Sign in / Sign up

Export Citation Format

Share Document