scholarly journals SUN-672 SGLT2 Inhibitor Reduces Hyperinsulinemia and Restores Pulsatile Growth Hormone Secretion in Obese MC4RKO Mice

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Zhengxiang Huang ◽  
Lili Huang ◽  
Chengjian Wang ◽  
Shanli Zhu ◽  
Xinzhou Qi ◽  
...  

Abstract Insulin and growth hormone (GH) are crucial counter-regulatory hormones in regulating glucose and lipid metabolisms. Insulin promotes fat storage, while GH promotes lipolysis and fat oxidation. In obese individuals, reduced GH secretion (hyposomatotropism) and increased insulin secretion (hyperinsulinemia) co-exist. The imbalance of these two hormones exacerbates fat accumulation. Therapeutic approaches to correct such hormonal imbalance in obesity are limited. The sodium/glucose cotransporter 2 inhibitor (SGLT2i), which promotes urinary glucose excretion, is a novel drug for overt type 2 diabetes (T2D). However, little is known about its efficacy in obese individuals without T2D in the clinic, in particular with hormonal imbalance. By applying SGLT2i (dapagliflozin, 1 mg/kg/d for 10 weeks) to a hyperphagic obese melanocortin 4 receptor knockout (MC4RKO) mouse model, we observed a significant reduction of hyperinsulinemia (fasting: 1.36±0.19 vs. 4.93±1.04 ng/ml, p<0.01; fed: 9.50±3.37 vs. 31.11±5.85 ng/ml, p<0.05, n=8) and restored pulsatile GH secretion without changing secretion pattern (pulsatile GH: 185.3±18.37 vs. 56.28±13.22 ng/ml per 6h, p<0.001; GH mass per secretion pulse: 50.31±8.20 vs. 15.55±3.18 ng/ml, p<0.01; number of secretory pulse per 6h: 3.71±0.29 vs. 3.57±0.43, p=0.78, n=8) as early as 4 weeks after the initiation of the treatment. Lipolysis and lipid oxidation-related gene expression levels were increased by SGLT2i treatment, whereas lipogenesis and inflammation gene expression levels were reduced, leading to decreased whole-body fat mass. Following the treatment, glucose tolerance and insulin sensitivity were both improved. Although a null effect was observed in food intake and daily activity, the treatment significantly promoted lipid usage and shifted energy metabolism towards negative energy balance. In conclusion, 10-week SGLT2i treatment improved glucose and lipid metabolisms in the hyperphagic obese MC4RKO mice. Such improvement occurs alongside reduced hyperinsulinemia and restored pulsatile GH secretion. This work provides insights for the potential use of SGLT2i in obese individuals prior to overt T2D. The final version of this work is published (1). Acknowledgements: grant (NHMRC, University of Queensland) and scholarship (CSC and UQ International scholarship) Reference: (1) Huang, Zhengxiang, et al. “Dapagliflozin restores insulin and growth hormone secretion in obese mice.” Journal of Endocrinology 245.1 (2020): 1-12. Unless otherwise noted, all abstracts presented at ENDO are embargoed until the date and time of presentation. For oral presentations, the abstracts are embargoed until the session begins. Abstracts presented at a news conference are embargoed until the date and time of the news conference. The Endocrine Society reserves the right to lift the embargo on specific abstracts that are selected for promotion prior to or during ENDO.

2007 ◽  
Vol 292 (6) ◽  
pp. E1750-E1762 ◽  
Author(s):  
Xinyan Wang ◽  
Mable M. S. Chu ◽  
Anderson O. L. Wong

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent growth hormone (GH)-releasing factor in lower vertebrates. However, its functional interactions with other GH regulators have not been fully characterized. In fish models, norepinephrine (NE) inhibits GH release at the pituitary cell level, but its effects on GH synthesis have yet to be determined. We examined adrenergic inhibition of PACAP-induced GH secretion and GH gene expression using grass carp pituitary cells as a cell model. Through activation of pituitary α2-adrenoreceptors, NE or the α2-agonist clonidine reduced both basal and PACAP-induced GH release and GH mRNA expression. In carp pituitary cells, clonidine also suppressed cAMP production and intracellular Ca2+ levels and blocked PACAP induction of these two second messenger signals. In GH3 cells transfected with a reporter carrying the grass carp GH promoter, PACAP stimulation increased GH promoter activity, and this stimulatory effect could be abolished by NE treatment. In parallel experiments, clonidine reduced GH primary transcript and GH promoter activity without affecting GH mRNA stability, and these inhibitory actions were mimicked by inhibiting adenylate cyclase (AC), blocking protein kinase A (PKA), removing extracellular Ca2+ in the culture medium, or inactivating L-type voltage-sensitive Ca2+ channels (VSCC). Since our recent studies have shown that PACAP can induce GH secretion in carp pituitary cells through cAMP/PKA- and Ca2+/calmodulin-dependent mechanisms, these results, taken together, suggest that α2-adrenergic stimulation in the carp pituitary may inhibit PACAP-induced GH release and GH gene transcription by blocking the AC/cAMP/PKA pathway and Ca2+ entry through L-type VSCC.


2009 ◽  
Vol 284 (24) ◽  
pp. 16541-16552 ◽  
Author(s):  
Üzen Savas ◽  
Daniel E. W. Machemer ◽  
Mei-Hui Hsu ◽  
Pryce Gaynor ◽  
Jerome M. Lasker ◽  
...  

CYP4A11 transgenic mice (CYP4A11 Tg) were generated to examine in vivo regulation of the human CYP4A11 gene. Expression of CYP4A11 in mice yields liver and kidney P450 4A11 levels similar to those found in the corresponding human tissues and leads to an increased microsomal capacity for ω-hydroxylation of lauric acid. Fasted CYP4A11 Tg mice exhibit 2–3-fold increases in hepatic CYP4A11 mRNA and protein, and this response is absent in peroxisome proliferator-activated receptor α (PPARα) null mice. Dietary administration of either of the PPARα agonists, fenofibrate or clofibric acid, increases hepatic and renal CYP4A11 levels by 2–3-fold, and these responses were also abrogated in PPARα null mice. Basal liver CYP4A11 levels are reduced differentially in PPARα−/− females (>95%) and males (<50%) compared with PPARα−/+ mice. Quantitative and temporal differences in growth hormone secretion are known to alter hepatic lipid metabolism and to underlie sexually dimorphic gene expression, respectively. Continuous infusion of low levels of growth hormone reduced CYP4A11 expression by 50% in PPARα-proficient male and female transgenic mice. A larger decrease was observed for the expression of CYP4A11 in PPARα−/− CYP4A11 Tg male mice to levels similar to that of female PPARα-deficient mice. These results suggest that PPARα contributes to the maintenance of basal CYP4A11 expression and mediates CYP4A11 induction in response to fibrates or fasting. In contrast, increased exposure to growth hormone down-regulates CYP4A11 expression in liver.


1984 ◽  
Vol 4 (12) ◽  
pp. 995-1000 ◽  
Author(s):  
Janet E. Merritt ◽  
Pauline R. M. Dobson ◽  
Richard J. H. Wojcikiewicz ◽  
John G. Baird ◽  
Barry L. Brown

A possible role for Ca 2+ and calmodulin in the action of growth-hormone-releasing factor (GHRF) was investigated. Low extracellular Ca2+ (<100 μM), methoxyverapamil, flunarizine, cinnarizine, and Co2+ decreased both basal and GHRF-stimulated growth-hormone secretion, but did not totally inhibit GHRF-stimulation secretion. A calmodulin antagonist, W7, abolished GHRF-stimulated GH secretion, with no effect on basal secretion. It is suggested that GHRF may act primarily by elevating cellular cyclic AMP, which may then modulate calcium mobilization or flux; the increased intracellular Ca2+ concentrations may then activate calmodulin.


1995 ◽  
Vol 144 (1) ◽  
pp. 83-90 ◽  
Author(s):  
E Magnan ◽  
L Mazzocchi ◽  
M Cataldi ◽  
V Guillaume ◽  
A Dutour ◽  
...  

Abstract The physiological role of endogenous circulating GHreleasing hormone (GHRH) and somatostatin (SRIH) on spontaneous pulsatile and neostigmine-induced secretion of GH was investigated in adult rams actively immunized against each neuropeptide. All animals developed antibodies at concentrations sufficient for immunoneutralization of GHRH and SRIH levels in hypophysial portal blood. In the anti GHRH group, plasma GH levels were very low; the amplitude of GH pulses was strikingly reduced, although their number was unchanged. No stimulation of GH release was observed after neostigmine administration. The reduction of GH secretion was associated with a decreased body weight and a significant reduction in plasma IGF-I concentration. In the antiSRIH group, no changes in basal and pulsatile GH secretion or the GH response to neostigmine were observed as compared to controls. Body weight was not significantly altered and plasma IGF-I levels were reduced in these animals. These results suggest that in sheep, circulating SRIH (in the systemic and hypophysial portal vasculature) does not play a significant role in pulsatile and neostigmine-induced secretion of GH. The mechanisms of its influence on body weight and production of IGF-I remain to be determined. Journal of Endocrinology (1995) 144, 83–90


1980 ◽  
Vol 93 (2) ◽  
pp. 134-138 ◽  
Author(s):  
M. Donnadieu ◽  
R. M. Schimpff ◽  
P. Garnier ◽  
J. L. Chaussain ◽  
J. C. Job

Abstract. Since transferrin (Tf) in vitro has a growth-promoting activity and is associated with NSILA properties, the aim of this work was to study in vivo the relationships between Tf, somatomedin activity (SM), growth hormone (GH) secretion, and height velocity in children. An iv infusion of ornithine hydrochloride was given to 23 controls; the induced rise of GH was accompanied by a simultaneous fall of SM (r = −0.711, P < 0.001) and was preceded by a fall of Tf (r = −0.610, P < 0.01). In 17 obese children SM was within the normal range, when Tf levels were higher and arginineinduced GH peaks lower than in the controls, and a negative correlation was found between Tf basal levels and GH peaks (r = −0.608, P < 0.01). In 9 children with confirmed hypopituitarism the Tf levels were significantly lower than in the controls. In 14 children with confirmed or suspected hypopituitarism a single im injection of hGH (6 mg) failed to induce Tf variations over 24 h. In 39 of these children the height velocity was significantly correlated with Tf basal levels (r = 0.701, P < 0.001). These data suggest that transferrin is involved in growth regulation, and that GH secretion is related to transferrin levels by a feed-back mechanism.


1987 ◽  
Vol 114 (4) ◽  
pp. 465-469 ◽  
Author(s):  
Gian Paolo Ceda ◽  
Robert G. Davis ◽  
Andrew R. Hoffman

Abstract. Glucocorticoids have been shown to have both stimulatory and suppressive effects on GH secretion in vitro and in vivo. In order to study the kinetics of glucocorticoid action on the somatotrope, cultured rat pituitary cells were exposed to dexamethasone for varying periods of time. During short-term incubations (≤ 4 h), dexamethasone inhibited GHRH and forskolin-elicited GH secretion, but during longer incubation periods, the glucocorticoid enhanced both basal and GHRH-stimulated GH release. The inhibitory effect of brief dexamethasone exposure was also seen in cells which previously had been exposed to dexamethasone. In addition, growth hormone secretion from cultured rat and human somatotropinoma cells was inhibited by a brief exposure to dexamethasone. Thus, the nature of glucocorticoid action on the isolated cultured somatotrope is biphasic, with brief exposure inhibiting, and more prolonged exposure stimulating GH secretion.


2011 ◽  
Vol 29 (36) ◽  
pp. 4776-4780 ◽  
Author(s):  
Thomas E. Merchant ◽  
Susan R. Rose ◽  
Christina Bosley ◽  
Shengjie Wu ◽  
Xiaoping Xiong ◽  
...  

Purpose Growth hormone deficiency (GHD) after radiation therapy negatively affects growth and development and quality of life in children with brain tumors. Patients and Materials Between 1997 and 2008, 192 pediatric patients with localized primary brain tumors (ependymoma, n = 88; low-grade glioma, n = 51; craniopharyngioma, n = 28; high-grade glioma, n = 23; and other tumor types, n = 2) underwent provocative testing of GH secretion by using the secretogogues arginine and l-dopa before and after (6, 12, 36, and 60 months) conformal radiation therapy (CRT). A total of 664 arginine/l-dopa test procedures were performed. Results Baseline testing revealed preirradiation GHD in 22.9% of tested patients. On the basis of data from 118 patients, peak GH was modeled as an exponential function of time after CRT and mean radiation dose to the hypothalamus. The average patient was predicted to develop GHD with the following combinations of the time after CRT and mean dose to the hypothalamus: 12 months and more than 60 Gy; 36 months and 25 to 30 Gy; and 60 months and 15 to 20 Gy. A cumulative dose of 16.1 Gy to the hypothalamus would be considered the mean radiation dose required to achieve a 50% risk of GHD at 5 years (TD50/5). Conclusion GH secretion after CRT can be predicted on the basis of dose and time after irradiation in pediatric patients with localized brain tumors. These findings provide an objective radiation dose constraint for the hypothalamus.


2000 ◽  
Vol 25 (2) ◽  
pp. 157-168 ◽  
Author(s):  
M Montero ◽  
L Yon ◽  
S Kikuyama ◽  
S Dufour ◽  
H Vaudry

Growth hormone-releasing hormone (GHRH) and pituitary adenylate cyclase-activating polypeptide (PACAP) belong to the same superfamily of regulatory neuropeptides and have both been characterized on the basis of their hypophysiotropic activities. This review describes the molecular evolution of the GHRH/PACAP gene family from urochordates to mammals and presents the hypothesis that the respective roles of GHRH and PACAP in the control of GH secretion are totally inverted in phylogenetically distant groups of vertebrates. In mammals, GHRH and PACAP originate from distinct precursors whereas, in all submammalian taxa investigated so far, including birds, amphibians and fish, a single precursor encompasses a GHRH-like peptide and PACAP. In mammals, GHRH-containing neurons are confined to the infundibular and dorsomedial nuclei of the hypothalamus while PACAP-producing neurons are widely distributed in hypothalamic and extrahypothalamic areas. In fish, both GHRH- and PACAP-immunoreactive neurons are restricted to the diencephalon and directly innervate the adenohypophysis. In mammals and birds, GHRH plays a predominant role in the control of GH secretion. In amphibians, both GHRH and PACAP are potent stimulators of GH release. In fish, PACAP strongly activates GH release whereas GHRH has little or no effect on GH secretion. The GHRH/PACAP family of peptides thus provides a unique model in which to investigate the structural and functional facets of evolution.


Sign in / Sign up

Export Citation Format

Share Document