scholarly journals SUN-210 Differentially Expressed Mirnas in Zona Reticularis (ZR) Cells of the Human Adrenal Cortex

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Francisco Garcia ◽  
Diego Colman ◽  
Luciana Zoff ◽  
Nora Isabel Saraco ◽  
Alicia Belgorosky ◽  
...  

Abstract The human adrenal cortex, involved in adaptive responses to stress, fluid homeostasis, and secondary sexual characteristics, arises from a tightly regulated development of a zone and cell type-specific secretory pattern. However, the molecular mechanisms governing adrenal zonation, particularly postnatal ZR development, which produces adrenal androgens in a life-time-specific manner, remain poorly understood. The hallmark of ZR is the low expression of type 2 3β-hydroxysteroid dehydrogenase (HSD3B2). However, the mechanisms underlying HSD3B2 downregulation in the ZR remain unknown. MiRNAs are seen as regulators of cell phenotypes. The objective of the study was to compare miRNA expression profiles in human adrenal ZR and zona fasciculata (ZF). ZF and ZR were microdissected from human adrenals tissues (n=5, from boys aged 16, 17 and 19 yr and girls aged 12 and 16 yr) by laser capture microdissection (LCM). Total RNA was extracted from 5 ZF/ZR pairs and next-generation sequencing (NGS) was used to perform the microRNA expression profiling. 281 mature microRNAs were identified in human adrenal cortex. Among them, 7 microRNAs were significantly differentially expressed between ZF and ZR. The expression of miR-375-3p, miR-483-3p and miR-7-5p was higher in ZR compared with its paired ZF by 2-fold or greater. Multiple available bioinformatic algorithms (TargetScan, miRanda, DianaLab and PicTar) were employed to search for its target genes. Among predicted target genes, several genes (GATA-6, GATA-4, SF1, NR4A2, and IGF-1) are known to be involved in HSD3B2 regulation. In summary, LCM combined with NGS provided a robust approach to explore the adrenal zone-specific micro-RNA profiling. Our data gave first hints that miRNAs might be novel regulatory modules associated with human adrenal ZR cell-specific transcript regulation underlying developmental androgen production.

2018 ◽  
Author(s):  
yuanshuai Fu ◽  
Zhe Xu ◽  
Zaizhong Chen ◽  
Bin Wen ◽  
Jianzhong Gao

The discus fish (Symphysodon aequifasciatus) is an ornamental fish that is well-known around the world. Phenotype investigation indicated that there are no significant differences in appearance between males and females of the discus fish. To better understand the sexual development mechanisms and obtain a high efficiency sex identification method in the artificial reproduction process of the discus fish, we constructed six cDNA libraries from three adult testes and three adult ovaries, and perform RNA-sequencing for identifying sex-biased candidate genes, microRNA (miRNA), and metabolic pathway using the Illumina Hiseq 4000. A total of 50,082 non-redundant genes (unigenes) were identified, of which 18,570 unigenes were significantly overexpressed in testes, and 11,182 unigenes were significantly overexpressed in ovaries, and 8 differentially expressed unigenes were validated by quantitative Real-Time PCR (qPCR). A total of 551 miRNAs were identified, of which 47 miRNAs were differentially expressed between testes and ovaries, and 7 differentially expressed miRNAs and one non-differential miRNA were validated by qPCR. Twenty-four of these differentially expressed miRNAs and their 15 predicted target genes constituted 41 important miRNA-mRNA interaction pairs, which may be important candidates for sex-related miRNAs and sex-related genes in the discus fish. Some of vital sex-related metabolic pathways were also identified that may play key roles in regulating gonad development of the discus fish. These results can provide important insights to better understand molecular mechanisms for sexual dimorphism in gonads development.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Li Shi ◽  
Yao Shi ◽  
Ya Zhang ◽  
Xiaolan Liao

Abstract The tobacco cutworm, Spodoptera litura, is an important pest of crop and vegetable plants worldwide, and its resistance to insecticides have quickly developed. However, the resistance mechanisms of this pest are still unclear. In this study, the change in mRNA and miRNA profiles in the susceptible, indoxacarb-resistant and field indoxacarb-resistant strains of S. litura were characterized. Nine hundred and ten co-up-regulated and 737 co-down-regulated genes were identified in the resistant strains. Further analysis showed that 126 co-differentially expressed genes (co-DEGs) (cytochrome P450, carboxy/cholinesterase, glutathione S-transferase, ATP-binding cassette transporter, UDP-glucuronosyl transferase, aminopeptidase N, sialin, serine protease and cuticle protein) may play important roles in indoxacarb resistance in S. litura. In addition, a total of 91 known and 52 novel miRNAs were identified, and 10 miRNAs were co-differentially expressed in the resistant strains of S. litura. Furthermore, 10 co-differentially expressed miRNAs (co-DEmiRNAs) had predicted co-DEGs according to the expected miRNA-mRNA negative regulation pattern and 37 indoxacarb resistance-related co-DEGs were predicted to be the target genes. These results not only broadened our understanding of molecular mechanisms of insecticide resistance by revealing complicated profiles, but also provide important clues for further study on the mechanisms of miRNAs involved in indoxacarb resistance in S. litura.


2020 ◽  
Author(s):  
Zheng Zhang ◽  
Youli Zheng ◽  
Xiaowei Bian ◽  
Mingguang Jin

Abstract Background MicroRNAs (miRNAs) are found to be involved in the pathogenesis of periodontitis, a major cause of tooth loss in adults. However, a comprehensive miRNA-mRNA regulatory network has still not been established. Methods One miRNA expression profile and 2 gene expression profiles were downloaded from the GEO database and analyzed using GEO2R. Candidate genes commonly appeared in differentially expressed mRNAs (DE-mRNAs) and target genes of differentially expressed miRNAs (DE-miRNAs) were selected for functional and pathway enrichment analyses using Enrichr database. Multivariate Logistic regression analysis was used to screen independent variables among candidate genes. The diagnostic values of screened genes were determined by the area under the receiver operating characteristic (ROC) curve (AUC). Results A total of 5 DE-miRNAs (4 upregulated and 1 downregulated) and 11 candidate genes (3 upregulated and 8 downregulated) were screened. After the construction of miRNA-mRNA regulatory network, 12 miRNA-mRNA pairs were identified. In the network, the upregulated genes were significantly enriched in cellular triglyceride homeostasis and positive regulation of B cell differentiation, whereas the downregulated genes were enriched in vesicle organization, negative regulation of lymphocyte and leukocyte migration. EPCAM and RAB30 were screened as risk factors of periodontitis. The combined AUC of these 2 genes was 0.896 (GSE10334) and 0.916 (GSE16134). Conclusion In this study, we established a potential periodontitis-related miRNA-mRNA regulatory network, which brings new insights into the molecular mechanisms and provides key clues in seeking novel therapeutic targets for periodontitis. In the future, more experiments need to be carried out to validate our current findings.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6938 ◽  
Author(s):  
Yongfu La ◽  
Jishun Tang ◽  
Xiaoyun He ◽  
Ran Di ◽  
Xiangyu Wang ◽  
...  

Background Long non-coding RNAs (lncRNAs) regulate endometrial secretion and uterine volume. However, there is little research on the role of lncRNAs in the uterus of Small Tail Han sheep (FecB++). Herein, RNA-seq was used to comparatively analyze gene expression profiles of uterine tissue between polytocous and monotocous sheep (FecB++) in follicular and luteal phases. Methods To identify lncRNA and mRNA expressed in the uterus, the expression of lncRNA and mRNA in the uterus of Small Tail Han sheep (FecB++) from the polytocous group (n = 6) and the monotocous group (n = 6) using RNA-sequencing and real-time polymerase chain reaction (RT-PCR). Identification of differentially expressed lncRNAs and mRNAs were performed between the two groups and two phases . Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for the differentially expressed mRNAs. LncRNA-mRNA co-expression network was constructed to further analyses the function of related genes. Results In the follicular phase, 473 lncRNAs and 166 mRNAs were differentially expressed in polytocous and monotocous sheep; in the luteal phase, 967 lncRNAs and 505 mRNAs were differentially expressed in polytocous and monotocous sheep. GO and KEGG enrichment analysis showed that the differentially expressed lncRNAs and their target genes are mainly involved in ovarian steroidogenesis, retinol metabolism, the oxytocin signaling pathway, steroid hormone biosynthesis, and the Foxo signaling pathway. Key lncRNAs may regulate reproduction by regulating genes involved in these signaling pathways and biological processes. Specifically, UGT1A1, LHB, TGFB1, TAB1, and RHOA, which are targeted by MSTRG.134747, MSTRG.82376, MSTRG.134749, MSTRG.134751, and MSTRG.134746, may play key regulatory roles. These results offer insight into molecular mechanisms underlying sheep prolificacy.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Houqing Zeng ◽  
Xin Zhang ◽  
Ming Ding ◽  
Yiyong Zhu

Abstract Background Zinc (Zn) deficiency is one of the most widespread soil constraints affecting rice productivity, but the molecular mechanisms underlying the regulation of Zn deficiency response is still limited. Here, we aim to understand the molecular mechanisms of Zn deficiency response by integrating the analyses of the global miRNA and mRNA expression profiles under Zn deficiency and resupply in rice seedlings by integrating Illumina’s high-throughput small RNA sequencing and transcriptome sequencing. Results The transcriptome sequencing identified 360 genes that were differentially expressed in the shoots and roots of Zn-deficient rice seedlings, and 97 of them were recovered after Zn resupply. A total of 68 miRNAs were identified to be differentially expressed under Zn deficiency and/or Zn resupply. The integrated analyses of miRNAome and transcriptome data showed that 12 differentially expressed genes are the potential target genes of 10 Zn-responsive miRNAs such as miR171g-5p, miR397b-5p, miR398a-5p and miR528-5p. Some miRNA genes and differentially expressed genes were selected for validation by quantitative RT-PCR, and their expressions were similar to that of the sequencing results. Conclusion These results provide insights into miRNA-mediated regulatory pathways in Zn deficiency response, and provide candidate genes for genetic improvement of Zn deficiency tolerance in rice.


2020 ◽  
Author(s):  
Jiaoyan Tan ◽  
Yan Wu ◽  
Jianping Guo ◽  
Huimin Li ◽  
Lili Zhu ◽  
...  

Abstract Background : The brown planthopper (BPH, Nilaparvata lugens Stål) is a kind of phloem-feeding pest that adversely affects rice yield. Recently, the BPH-resistance gene, BPH6 , was cloned and applied in rice breeding to effectively control BPH. However, the molecular mechanisms underlying BPH6 are poorly understood. Results: Here, an integrated miRNA and mRNA expression profiling analysis was performed on BPH6 -transgenic (BPH6G) and Nipponbare (wild type, WT) plants after BPH infestation, and a total of 217 differentially expressed miRNAs (DEMs) and 7,874 differentially expressed mRNAs (DEGs) were identified. 29 miRNAs, including members of miR160, miR166 and miR169 family were opposite expressed during early or late feeding stages between the two varieties, whilst 9 miRNAs were specifically expressed in BPH6G plants, suggesting involvement of these miRNAs in BPH6 -mediated resistance to BPH. In the transcriptome analysis, 949 DEGs were opposite expressed during early or late feeding stages of the two genotypes, which were enriched in metabolic processes, cellular development, cell wall organization, cellular component movement and hormone transport, and certain primary and secondary metabolite synthesis. 24 genes were further selected as candidates for BPH resistance. Integrated analysis of the DEMs and DEGs showed that 34 miRNAs corresponding to 42 target genes were candidate miRNA-mRNA pairs for BPH resistance, 18 pairs were verified by qRT-PCR, and two pairs were confirmed by in vivo analysis. Conclusions: For the first time, we reported integrated small RNA and transcriptome sequencing to illustrate resistance mechanisms against BPH in rice. Our results provide a valuable resource to ascertain changes in BPH-induced miRNA and mRNA expression profiles and enable to comprehend plant-insect interactions and find a way for efficient insect control.


2019 ◽  
Vol 20 (5) ◽  
pp. 1041 ◽  
Author(s):  
Shuo Gao ◽  
Hao Jiang ◽  
Jie Sun ◽  
Youxiang Diao ◽  
Yi Tang ◽  
...  

The Reticuloendotheliosis virus (REV) primarily causes avian severe immunosuppression, in addition to other symptoms, which include avian dwarfing syndrome and chronic tumors in lymphoid and other tissue. To date, REV’s molecular mechanisms leading to immunosuppression have not been fully elucidated. In the current study, we aimed to elucidate the role of microRNAs (miRNA) in regulating gene expression during REV infections. Therefore, we used a high-dose spleen necrosis virus (SNV) model of REV to inoculate one-day-old specific pathogen-free (SPF) chickens, thereby inducing congenital infections. We analyzed miRNA and mRNA expression profiles using Next Generation Sequencing (NGS) in a total of 19 spleen samples that were collected at 7, 14, and 21 days post infection (dpi). The results showed that 63 differentially expressed miRNAs (DEmiRNAs) (30 known miRNAs and 33 novel miRNAs) and 482 differentially expressed target genes (DETGs) were identified. Integration analysis identified 886 known miRNA–mRNA and 580 novel miRNA–mRNA interaction pairs, which involved miRNAs that were inversely correlated with the above DETGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DETGs were considerably enriched in the immune-relevant pathways category, such as immune system, cell growth and death, signaling molecules and interaction, signal transduction, etc. We further verified selected immune-relevant miRNA and their DETGs while using quantitative RT-PCR (qRT-PCR). Overall, our data revealed valuable immune-related miRNA–mRNA interaction information that occurred during REV infections, thereby broadening our understanding of the REV-induced immunosuppression.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1381
Author(s):  
Aqin Cao ◽  
Ruihua Wang ◽  
Jianbo Wang

High-throughput sequencing was used to distinguish the gene and miRNA expression profiles in the leaves of three progenies from a rice backcross introgression line (BC2F12) and their parents (Oryza sativa and wild rice, O. longistaminata). A total of 33,419 genes and 513 miRNAs were identified in two parents and three lines, and the majority of the genes and miRNAs were commonly expressed. The results show that 10.23% to 17.94% of the genes were differentially expressed genes (DEGs) in the progenies compared with those of the two parents, and the majority of them were up-regulated. Of the miRNAs, 12.56% to15.43% were differentially expressed in the progeny/O. sativa comparisons and the majority of which were up-regulated, while 42.02% to 45.21% of miRNAs were differentially expressed in the progeny/O. longistaminata comparisons, of which nearly half were down-regulated. Most of the DEGs and differentially expressed miRNAs showed expression levels close to that of O. sativa, indicating that the expression of genes and miRNAs in progenies was closely related to their chromosome complements and that the miRNAs were more susceptible than the genes to the effects of genomic composition. Furthermore, a larger number of target genes were predicted in the progeny/O. longistaminata comparisons. Finally, we found that the expression of some genes and miRNAs might increase the possibility for abiotic stress responses and adaptation in progenies. Together, our findings increase the understanding of the molecular mechanisms of hybridization and backcrossing on the expression levels of genes and miRNAs in rice leaves.


2019 ◽  
Author(s):  
Jiaoyan Tan ◽  
Yan Wu ◽  
Jianping Guo ◽  
Huimin Li ◽  
Lili Zhu ◽  
...  

Abstract Background: The brown planthopper (BPH, Nilaparvata lugens Stål) is a kind of phloem-feeding pest that adversely affects rice yield. Recently, the BPH-resistance gene, BPH6, was cloned and applied in rice breeding to effectively control BPH. However, the molecular mechanisms underlying BPH6 are poorly understood. Results: Here, an integrated miRNA and mRNA expression profiling analysis was performed on BPH6-transgenic (BPH6G) and Nipponbare (wild type, WT) plants after BPH infestation, and a total of 217 differentially expressed miRNAs (DEMs) and 7,874 differentially expressed mRNAs (DEGs) were identified. 29 miRNAs, including members of miR160, miR166 and miR169 family were opposite expressed during early or late feeding stages between the two varieties, whilst 9 miRNAs were specifically expressed in BPH6G plants, suggesting involvement of these miRNAs in BPH6-mediated resistance to BPH. In the transcriptome analysis, 949 DEGs were opposite expressed during early or late feeding stages of the two genotypes, which were enriched in metabolic processes, cellular development, cell wall organization, cellular component movement and hormone transport, and certain primary and secondary metabolite synthesis. 24 genes were further selected as candidates for BPH resistance. Integrated analysis of the DEMs and DEGs showed that 34 miRNAs corresponding to 42 target genes were candidate miRNA-mRNA pairs for BPH resistance, 18 pairs were verified by qRT-PCR, and two pairs were confirmed by in vivo analysis. Conclusions: For the first time, we reported integrated small RNA and transcriptome sequencing to illustrate resistance mechanisms against BPH in rice. Our results provide a valuable resource to ascertain changes in BPH-induced miRNA and mRNA expression profiles and enables the analysis of the comprehensive plant-insect interactions required for efficient insect control.


2018 ◽  
Author(s):  
Roberta Davoli ◽  
Enrico Gaffo ◽  
Martina Zappaterra ◽  
Stefania Bortoluzzi ◽  
Paolo Zambonelli

SummaryThe identification of the molecular mechanisms regulating pathways associated to the potential of fat deposition in pigs can lead to the detection of key genes and markers for the genetic improvement of fat traits. MicroRNAs (miRNAs) interactions with target RNAs regulate gene expression and modulate pathway activation in cells and tissues. In pigs, miRNA discovery is well far from saturation and the knowledge of miRNA expression in backfat tissue and particularly of the impact of miRNA variations are still fragmentary. We characterized by RNAseq the small RNAs (sRNAs) expression profiles in Italian Large White pig backfat tissue. Comparing two groups of pigs divergent for backfat deposition, we detected 31 significant differentially expressed (DE) sRNAs, 14 up-regulated (including ssc-miR-132, ssc-miR-146b, sscmiR-221–5p, ssc-miR-365–5p, and the moRNA ssc-moR-21–5p) and 17 down-regulated (including ssc-miR-136, ssc-miR-195, ssc-miR-199a-5p, and ssc-miR-335). To understand the biological impact of the observed miRNA expression variations, we used the expression correlation of DE miRNA target transcripts expressed in the same samples to define a regulatory network of 193 interactions between DE miRNAs and 40 DE target transcripts showing opposite expression profiles and being involved in specific pathways. Several miRNAs and mRNAs in the network resulted to be expressed from backfat related pig QTLs. These results are informative on the complex mechanisms influencing fat traits, shed light on a new aspect of the genetic regulation of fat deposition in pigs, and facilitate the perspective implementation of innovative strategies of pig genetic improvement based on genomic markers.


Sign in / Sign up

Export Citation Format

Share Document