scholarly journals Modulation of Calcium Signaling by Chemogenetic Tools to Elucidate the Pathogenesis of Primary Aldosteronism

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A294-A295
Author(s):  
Teresa Cosentino ◽  
Bakhta Fedlaoui ◽  
Isabelle Giscos-Douriez ◽  
Fabio Luiz Fernandes-Rosa ◽  
Christopher Magnus ◽  
...  

Abstract Primary aldosteronism (PA) is the most frequent form of secondary arterial hypertension. The identification of germline or somatic mutations in different genes coding for ion channels (KCNJ5, CACNA1D, CACNA1H and CLCN2) and ATPases (ATP1A1 and ATP2B3) defines PA as a channelopathy. These mutations promote increased intracellular calcium concentrations and activation of calcium signaling, the main trigger for aldosterone biosynthesis. The aim of our study was to elucidate the mechanisms underlying the development of PA by modulating calcium signaling using chemogenetic tools. We have generated two different adrenocortical H295R_S2 cell lines stably expressing different chimeric ion channels generated by fusing the mutated extracellular ligand binding domain of the α7 nicotinic acetylcholine receptor to the ion pore domain of large Cys-loop receptor ion channel family; these receptors constitute PSAM (Pharmacologically Selective Actuator Modules). The mutations introduced in the ligand-binding domain allow to use synthetic ligands, PSEM (Pharmacologically Selective Effector Molecules) to activate the PSAM. We used two different PSAM: the chimeric receptor α7-5HT3 or a mutated acetylcholine receptor nAchR, allowing respectively modulation of sodium or calcium entry into the cells in response to the specific PSEM: Varenicline for α7-5HT3 or Compound 9S for mutated nAChR. The cells lines were characterized in terms of intracellular calcium concentrations, cell proliferation, aldosterone production and steroidogenic gene expression. Cells expressing α7-5HT3 treated for 24h with increasing concentrations of Varenicline (10–9 to 10-5M) showed increased intracellular calcium concentrations and an increase in expression of steroidogenic genes such as StAR CYP17A1, CYP21A2 and CYP11B2. Cell proliferation was not affected. Calcium entry into cells expressing the mutated nAChR receptor treated for 24h with increasing concentrations of Compound 9S (10–9 to 10-5M) induced an increase in expression of steroidogenic genes such as StAR, CYP21A2 and HSD3B2, but not CYP11B2. Similarly to the results obtained in cells expressing α7-5HT3, cell proliferation was unaffected in response to Compound 9S. These cell lines, in which we can modulate the intracellular calcium concentration « on demand », are a useful tool for a better understanding of the alterations of intracellular ion balance and calcium signaling in the pathophysiology of PA.

2000 ◽  
Vol 149 (4) ◽  
pp. 793-798 ◽  
Author(s):  
Malcolm A. Leissring ◽  
Yama Akbari ◽  
Christopher M. Fanger ◽  
Michael D. Cahalan ◽  
Mark P. Mattson ◽  
...  

Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations.


2021 ◽  
Vol 20 ◽  
pp. 153303382110452
Author(s):  
Xingbang Wang ◽  
Yong Xiao ◽  
Mingming Huang ◽  
Bing Shen ◽  
Haowei Xue ◽  
...  

Esophageal squamous cell carcinoma (ESCC) is the sixth leading cause of death due to cancer, indicating that finding new therapeutic targets or approaches for ESCC treatment is imperative. Transient Receptor Potential cation channel subfamily M, member 2 (TRPM2) is a calcium-permeable, nonselective cation channel that responds to reactive oxygen species (ROS), which are found in the tumor microenvironment and are important regulators of tumorigenesis, cell proliferation, apoptosis, and the therapeutic response. Here, we used immunohistochemical analysis of tumor tissue derived from patients with ESCC to find that the TRPM2 channel protein expression level was increased in tumor tissue compared with adjacent normal tissue. Intracellular calcium concentration measurements, western blotting, and ROS and cell viability assays were used with a human ESCC cell line (TE-1 cells) to find that TRPM2 participated in the ROS hydrogen peroxide-induced increase in intracellular calcium. This increased calcium inhibited cell proliferation and enhanced apoptosis. Pretreatment of cells with the anticancer agent 5-fluorouracil (5-FU) significantly increased ROS production, which potentiated TRPM2-mediated calcium signaling, decreased cell proliferation, and increased apoptosis in TE-1 cells, suggesting that the therapeutic effect of 5-FU in ESCC cells may be mediated by the TRPM2 channel-mediated calcium influx. These findings offer a potential treatment target and provide mechanistic insight into the therapeutic effects of 5-FU in patients with ESCC.


1997 ◽  
Vol 78 (06) ◽  
pp. 1500-1504 ◽  
Author(s):  
Catherine Vial ◽  
Béatrice Hechier ◽  
Catherine Léon ◽  
Jean-Pierre Cazenave ◽  
Christian Gachet

SummaryHuman platelets are thought to possess at least two subtypes of purinoceptor, one of which, coupled to G-proteins, could be the P2Y1 receptor (Léon et al. 1997). However, it has been suggested that the unique rapid calcium influx induced by ADP in platelets could involve P2X1 ionotropic receptors (MacKenzie et al. 1996) and the aim of this study was thus to investigate the presence of P2X purinoceptors in platelets and megakaryoblastic cells. Using PCR experiments, we found P2X1 mRNA to be present in human platelets and megakaryoblastic cell lines. In platelets, the selective P2X1 agonist αβMeATP induced a rise in intracellular calcium only in the presence of external calcium and this effect was antagonized by suramin and PPADS. Repeated addition of a�MeATP desensitized the P2X1 purinoceptor but only slightly affected the ADP response, while no calcium response to αβMeATP was observed in megakaryoblastic cells. These results support the existence of functional P2X1 purinoceptors on human platelets and the presence of P2X1 transcripts in megakaryoblastic cell lines.


2020 ◽  
Vol 20 (18) ◽  
pp. 1628-1639
Author(s):  
Sergi Gómez-Ganau ◽  
Josefa Castillo ◽  
Andrés Cervantes ◽  
Jesus Vicente de Julián-Ortiz ◽  
Rafael Gozalbes

Background: The Epidermal Growth Factor Receptor (EGFR) is a transmembrane protein that acts as a receptor of extracellular protein ligands of the epidermal growth factor (EGF/ErbB) family. It has been shown that EGFR is overexpressed by many tumours and correlates with poor prognosis. Therefore, EGFR can be considered as a very interesting therapeutic target for the treatment of a large variety of cancers such as lung, ovarian, endometrial, gastric, bladder and breast cancers, cervical adenocarcinoma, malignant melanoma and glioblastoma. Methods: We have followed a structure-based virtual screening (SBVS) procedure with a library composed of several commercial collections of chemicals (615,462 compounds in total) and the 3D structure of EGFR obtained from the Protein Data Bank (PDB code: 1M17). The docking results from this campaign were then ranked according to the theoretical binding affinity of these molecules to EGFR, and compared with the binding affinity of erlotinib, a well-known EGFR inhibitor. A total of 23 top-rated commercial compounds displaying potential binding affinities similar or even better than erlotinib were selected for experimental evaluation. In vitro assays in different cell lines were performed. A preliminary test was carried out with a simple and standard quick cell proliferation assay kit, and six compounds showed significant activity when compared to positive control. Then, viability and cell proliferation of these compounds were further tested using a protocol based on propidium iodide (PI) and flow cytometry in HCT116, Caco-2 and H358 cell lines. Results: The whole six compounds displayed good effects when compared with erlotinib at 30 μM. When reducing the concentration to 10μM, the activity of the 6 compounds depends on the cell line used: the six compounds showed inhibitory activity with HCT116, two compounds showed inhibition with Caco-2, and three compounds showed inhibitory effects with H358. At 2 μM, one compound showed inhibiting effects close to those from erlotinib. Conclusion: Therefore, these compounds could be considered as potential primary hits, acting as promising starting points to expand the therapeutic options against a wide range of cancers.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aldhabi Mokhtar ◽  
Chuize Kong ◽  
Zhe Zhang ◽  
Yan Du

Abstract Objectives The aim of this study was to investigate the effect of lncRNA-SNHG15 in bladder carcinoma using cell lines experiments and the relationship between clinical characteristics and lncRNA-SNHG15 expression was analyzed. Methods Bladder cancer tissues and near-cancer tissues were collected. The real-time PCR (RT-PCR) was used to detect the expression of lncRNA-SNHG15 in tissues and cell lines. The expression of lncRNA-SNHG15 was downregulated by interference (siRNA), as detected by RT-PCR, that was used to determine the efficiency of the interference. CCK-8 and Transwell assays were used to evaluate the effect of lncRNA-SNHG15 on the proliferation and invasion capability of bladder cancer cells. The t-test was used for Statistical analyses, which were carried out using the Statistical Graph pad 8.0.1.224 software. Result The expression of lncRNA-SNHG15 was up regulated in 5637, UMUC3 and T24 cell lines compared with corresponding normal controls (P < 0.05). Up regulation was positively related to tumor stage (P = 0.015). And tumor size (P = 0.0465). The down-regulation of lncRNA-SNHG15 with siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion. Conclusion This study showed that lncRNA-SNHG15 is overexpressed in bladder cancer tissues and (5637, UMUC3 T24) cell lines. Up regulation was positively related to tumor stage (P = 0.015), and tumor size (P = 0.0465). Down-regulation of lncRNA-SNHG15 by siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion, indicating a potential molecular target for future tumor targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document