scholarly journals V1b and CRHR1 Receptor Heterodimerization Mediates Synergistic Biological Actions of Vasopressin and CRH

2012 ◽  
Vol 26 (3) ◽  
pp. 502-520 ◽  
Author(s):  
Brigitte Murat ◽  
Dominic Devost ◽  
Miriam Andrés ◽  
Julie Mion ◽  
Véra Boulay ◽  
...  

Abstract Vasopressin (AVP) and CRH synergistically regulate adrenocorticotropin and insulin release at the level of the pituitary and pancreas, respectively. Here, we first extended these AVP and CRH coregulation processes to the adrenal medulla. We demonstrate that costimulation of chromaffin cells by AVP and CRH simultaneously induces a catecholamine secretion exceeding the one induced by each hormone alone, thus demonstrating a net potentiation. To further elucidate the molecular mechanisms underlying this synergism, we coexpressed human V1b and CRH receptor (CRHR)1 receptor in HEK293 cells. In this heterologous system, AVP also potentiated CRH-stimulated cAMP accumulation in a dose-dependent and saturable manner. This effect was only partially mimicked by phorbol ester or inhibited by a phospholipase C inhibitor respectively. This finding suggests the existence of an new molecular mechanism, independent from second messenger cross talk. Similarly, CRH potentiated the AVP-induced inositol phosphates production. Using bioluminescence resonance energy transfer, coimmunoprecipitation, and receptor rescue experiments, we demonstrate that V1b and CRHR1 receptors assemble as heterodimers. Moreover, new pharmacological properties emerged upon receptors cotransfection. Taken together, these data strongly suggest that direct molecular interactions between V1b and CRHR1 receptors play an important role in mediating the synergistic interactions between these two receptors.

2021 ◽  
Vol 15 ◽  
Author(s):  
Alejandro Lillo ◽  
Jaume Lillo ◽  
Iu Raïch ◽  
Cristina Miralpeix ◽  
Francesc Dosrius ◽  
...  

There is evidence of ghrelinergic-cannabinoidergic interactions in the central nervous system (CNS) that may impact on the plasticity of reward circuits. The aim of this article was to look for molecular and/or functional interactions between cannabinoid CB1 and ghrelin GHS-R1a receptors. In a heterologous system and using the bioluminescence resonance energy transfer technique we show that human versions of cannabinoid CB1 and ghrelin GHS-R1a receptors may form macromolecular complexes. Such receptor heteromers have particular properties in terms of CB1/Gi-mediated signaling and in terms of GHS-R1a-Gq-mediated signaling. On the one hand, just co-expression of CB1R and GHS-R1a led to impairment of cannabinoid signaling. On the other hand, cannabinoids led to an increase in ghrelin-derived calcium mobilization that was stronger at low concentrations of the CB1 receptor agonist, arachidonyl-2’-chloroethylamide (ACEA). The expression of CB1-GHS-R1a receptor complexes in striatal neurons was confirmed by in situ proximity ligation imaging assays. Upregulation of CB1-GHS-R1a- receptor complexes was found in striatal neurons from siblings of pregnant female mice on a high-fat diet. Surprisingly, the expression was upregulated after treatment of neurons with ghrelin (200 nM) or with ACEA (100 nM). These results help to better understand the complexities underlying the functional interactions of neuromodulators in the reward areas of the brain.


2018 ◽  
Vol 115 (47) ◽  
pp. 12051-12056 ◽  
Author(s):  
Akil A. Puckerin ◽  
Donald D. Chang ◽  
Zunaira Shuja ◽  
Papiya Choudhury ◽  
Joachim Scholz ◽  
...  

Genetically encoded inhibitors for voltage-dependent Ca2+ (CaV) channels (GECCIs) are useful research tools and potential therapeutics. Rad/Rem/Rem2/Gem (RGK) proteins are Ras-like G proteins that potently inhibit high voltage-activated (HVA) Ca2+ (CaV1/CaV2 family) channels, but their nonselectivity limits their potential applications. We hypothesized that nonselectivity of RGK inhibition derives from their binding to auxiliary CaVβ-subunits. To investigate latent CaVβ-independent components of inhibition, we coexpressed each RGK individually with CaV1 (CaV1.2/CaV1.3) or CaV2 (CaV2.1/CaV2.2) channels reconstituted in HEK293 cells with either wild-type (WT) β2a or a mutant version (β2a,TM) that does not bind RGKs. All four RGKs strongly inhibited CaV1/CaV2 channels reconstituted with WT β2a. By contrast, when channels were reconstituted with β2a,TM, Rem inhibited only CaV1.2, Rad selectively inhibited CaV1.2 and CaV2.2, while Gem and Rem2 were ineffective. We generated mutant RGKs (Rem[R200A/L227A] and Rad[R208A/L235A]) unable to bind WT CaVβ, as confirmed by fluorescence resonance energy transfer. Rem[R200A/L227A] selectively blocked reconstituted CaV1.2 while Rad[R208A/L235A] inhibited CaV1.2/CaV2.2 but not CaV1.3/CaV2.1. Rem[R200A/L227A] and Rad[R208A/L235A] both suppressed endogenous CaV1.2 channels in ventricular cardiomyocytes and selectively blocked 25 and 62%, respectively, of HVA currents in somatosensory neurons of the dorsal root ganglion, corresponding to their distinctive selectivity for CaV1.2 and CaV1.2/CaV2.2 channels. Thus, we have exploited latent β-binding–independent Rem and Rad inhibition of specific CaV1/CaV2 channels to develop selective GECCIs with properties unmatched by current small-molecule CaV channel blockers.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Julia U Sprenger ◽  
Viacheslav O Nikolaev

PURPOSE: cAMP is a central regulator of cardiac function and disease. This global second messenger acts in a compartmentalized fashion, and changes in cAMP dynamics are linked to cardiac diseases. In this project, we visualized cAMP signals directly in such microdomains to gain insights into the molecular mechanisms involved in cAMP compartmentation and its alterations in hypertrophy. Methods: We generated transgenic mice expressing a new Förster resonance energy transfer (FRET)-based cAMP sensor Epac1-camps-PLN to measure cAMP dynamics in the microdomain around the sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2). This sensor is targeted to SERCA2 via phospholamban (PLN). Results: Colocalization and cell fractionation analysis confirmed proper localization of the sensor in transgenic mouse hearts. qPCR analysis revealed a two-fold overexpression of PLN. However, no adverse cardiac phenotype could be detected by histological analysis and heart weight to body weight ratios. Local cAMP dynamics were measured using freshly isolated adult ventricular myocytes and compared to cAMP signals in the bulk cytosol using cardiomyocytes from Epac1-camps mice. We detected the predominant role of phosphodiesterases (PDEs) 4 and 3 in the SERCA2 compartment under basal conditions. These PDEs were responsible for shaping the microdomain and its segregation from the cytosolic compartment. Interestingly, beta1-adrenergic stimulation led to a stronger increase of local cAMP in the SERCA2 compartment compared to the bulk cytosol. 8 weeks after transverse aortic constriction (TAC), PDE4 activity was downregulated in the SERCA2 microdomain compared to sham cardiomyocytes. Conclusion: We successfully generated transgenic mice expressing the targeted Epac1-camps-PLN biosensor to visualize cAMP dynamics in the SERCA2 compartment. We could show distinct cAMP dynamics around the SERCA2 compartment compared to the bulk cytosol and uncovered its alterations in hypertrophied cardiomyocytes


2006 ◽  
Vol 282 (7) ◽  
pp. 4417-4426 ◽  
Author(s):  
Cicerone Tudor ◽  
Jérôme N. Feige ◽  
Harikishore Pingali ◽  
Vidya Bhushan Lohray ◽  
Walter Wahli ◽  
...  

The nucleus is an extremely dynamic compartment, and protein mobility represents a key factor in transcriptional regulation. We showed in a previous study that the diffusion of peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors regulating major cellular and metabolic functions, is modulated by ligand binding. In this study, we combine fluorescence correlation spectroscopy, dual color fluorescence cross-correlation microscopy, and fluorescence resonance energy transfer to dissect the molecular mechanisms controlling PPAR mobility and transcriptional activity in living cells. First, we bring new evidence that in vivo a high percentage of PPARs and retinoid X receptors is associated even in the absence of ligand. Second, we demonstrate that coregulator recruitment (and not DNA binding) plays a crucial role in receptor mobility, suggesting that transcriptional complexes are formed prior to promoter binding. In addition, association with coactivators in the absence of a ligand in living cells, both through the N-terminal AB domain and the AF-2 function of the ligand binding domain, provides a molecular basis to explain PPAR constitutive activity.


2013 ◽  
Vol 51 (1) ◽  
pp. 191-202 ◽  
Author(s):  
Patricia M Lenhart ◽  
Stefan Broselid ◽  
Cordelia J Barrick ◽  
L M Fredrik Leeb-Lundberg ◽  
Kathleen M Caron

Receptor activity-modifying protein 3 (RAMP3) is a single-pass transmembrane protein known to interact with and affect the trafficking of several G-protein-coupled receptors (GPCRs). We sought to determine whether RAMP3 interacts with GPR30, also known as G-protein-coupled estrogen receptor 1. GPR30 is a GPCR that binds estradiol and has important roles in cardiovascular and endocrine physiology. Using bioluminescence resonance energy transfer titration studies, co-immunoprecipitation, and confocal microscopy, we show that GPR30 and RAMP3 interact. Furthermore, the presence of GPR30 leads to increased expression of RAMP3 at the plasma membrane in HEK293 cells. In vivo, there are marked sex differences in the subcellular localization of GPR30 in cardiac cells, and the hearts of Ramp3−/− mice also show signs of GPR30 mislocalization. To determine whether this interaction might play a role in cardiovascular disease, we treated Ramp3+/+ and Ramp3−/− mice on a heart disease-prone genetic background with G-1, a specific agonist for GPR30. Importantly, this in vivo activation of GPR30 resulted in a significant reduction in cardiac hypertrophy and perivascular fibrosis that is both RAMP3 and sex dependent. Our results demonstrate that GPR30–RAMP3 interaction has functional consequences on the localization of these proteins both in vitro and in vivo and that RAMP3 is required for GPR30-mediated cardioprotection.


2020 ◽  
Vol 31 (9) ◽  
pp. 2083-2096 ◽  
Author(s):  
Somenath Datta ◽  
Rama Kataria ◽  
Jia-Yue Zhang ◽  
Savannah Moore ◽  
Kaitlyn Petitpas ◽  
...  

BackgroundTwo coding renal risk variants (RRVs) of the APOL1 gene (G1 and G2) are associated with large increases in CKD rates among populations of recent African descent, but the underlying molecular mechanisms are unknown. Mammalian cell culture models are widely used to study cytotoxicity of RRVs, but results have been contradictory. It remains unclear whether cytotoxicity is RRV-dependent or driven solely by variant-independent overexpression. It is also unknown whether expression of the reference APOL1 allele, the wild-type G0, could prevent cytotoxicity of RRVs.MethodsWe generated tetracycline-inducible APOL1 expression in human embryonic kidney HEK293 cells and examined the effects of increased expression of APOL1 (G0, G1, G2, G0G0, G0G1, or G0G2) on known cytotoxicity phenotypes, including reduced viability, increased swelling, potassium loss, aberrant protein phosphorylation, and dysregulated energy metabolism. Furthermore, whole-genome transcriptome analysis examined deregulated canonical pathways.ResultsAt moderate expression, RRVs but not G0 caused cytotoxicity in a dose-dependent manner that coexpression of G0 did not reduce. RRVs also have dominant effects on canonical pathways relevant for the cellular stress response.ConclusionsIn HEK293 cells, RRVs exhibit a dominant toxic gain-of-function phenotype that worsens with increasing expression. These observations suggest that high steady-state levels of RRVs may underlie cellular injury in APOL1 nephropathy, and that interventions that reduce RRV expression in kidney compartments may mitigate APOL1 nephropathy.


2008 ◽  
Vol 86 (8) ◽  
pp. 526-535 ◽  
Author(s):  
Nathan J. Evans ◽  
Jeffery W. Walker

G protein-coupled receptors (GPCRs), including endothelin receptor A (ETA) and B (ETB), may form dimers or higher-order oligomers that profoundly influence signaling. Here we examined a PDZ finger motif within the C-terminus of ETA and its role in heterodimerization with ETB, and in homodimerization with itself, when expressed in HEK293 cells. Receptor dimerization was monitored by (i) fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) (FRET donor) and tetracysteine/FlAsH (FRET acceptor) fused to the C-termini of ET receptors, and (ii) coimmunoprecipitation of ET receptors after mild detergent solubilization. Mutations in a PDZ finger motif at threonine403/serine404 eliminated FRET and reduced coimmunoprecipitation of heterodimers and homodimers. Functional consequences were evaluated by measuring mobilization of intracellular Ca2+ and internalization of receptors in response to a 10 nmol/L ET-1 challenge. PDZ mutations converted a sustained Ca2+ signal mediated by ETA:ETB heterodimers into a transient response, similar to that observed for homodimers or monomers. Heterodimers containing PDZ mutations were seen to internalize in a similar time domain (approximately 5 min) to the transient Ca2+ elevation and with similar kinetics to internalization of ETA homodimers or monomers. Without the PDZ mutations, heterodimers did not internalize over 15 min, suggesting the intriguing possibility that sustained Ca2+ signaling was a consequence (at least in part) of delayed internalization. The results are consistent with structural models of ETA-receptor dimerization that place threonine403/serine404 of the PDZ finger motif at the interaction interface between heterodimers and homodimers. Sustained Ca2+ signaling and delayed endocytosis of ETA:ETB heterodimers argues strongly for a unique dimer interface that impacts transmembrane signaling and internalization.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2028-2028
Author(s):  
Abdelouahid El Khattouti ◽  
Volker R. Stoldt ◽  
Rüdiger E. Scharf

Abstract Abstract 2028 Background and Objectives: The HPA-1 polymorphism of αIIbβ3 arises from a Leu→Pro exchange at residue 33 of the β3 subunit resulting in HPA-1a (Leu33) or HPA-1b (Pro33). We have documented that patients with coronary artery disease who are carriers of HPA-1b (Pro33) experience their myocardial infarction 5.2 years earlier than HPA-1a/1a (Leu33) patients (J Thromb Haemost 2005; 3: 1522). Based on these observations, it has been postulated that HPA-1b (Pro33) is a prothrombotic variant of αIIbβ3. We have now generated a model overexpressing fluorescent proteins fused with αIIbβ3 in transfected HEK293 cells. Methods: :A yellow protein (YFP) and a cyan fluorescent protein (CFP) were cloned to the C-termini of the β3 and αIIb subunits prior to transfection of HEK293 cells, subsequently expressing the fusion proteins of both HPA-1 isoforms. Using flow cytometry, Western blotting and specific antibodies directed against αIIb or β3, we identified 12 HPA-1a and 11 HPA-1b positive clones. For further experiments only those cell lines expressing equal amounts of fluorescent fusion proteins, i.e. a 140 kD αIIb-CFP and a 113 kD β3-YFP, were used. Results: Functional integrity of both integrin variants and proper membrane insertion were documented by intact activation of transfected HEK293 cells through G protein-coupled receptors with organic acid (1-stearoyl-2-arachidonoyl-sn-glycerol) or direct phorbol 12-myristate 13-acetate-induced stimulation of protein kinase C and by specific binding of Alexa488 fibrinogen to αIIbβ3 in response to inside-out signaling. In the presencence of pertussis toxin or abciximab, activation or ligand binding of αIIbβ3 were completely (>98%) inhibited in both isoforms. Activation of αIIbβ3 stimulates the tyrosine kinase Src, constitutively associated with the the β-subunit of the integrin. To determine whether αIIbβ3-dependent outside-in signaling is responsible for a polymorphism-related modulation, we performed adhesion experiments under static conditions with fibrinogen (50 μg/ml) in the absence or presence of Mn2+ (0.5 mM). Specific activation of the phosphotyrosine motif (Src-pY418), as determined by Western blotting and quantified by densitometry (ratio of Src-pY418/total Src), was 15 + 1.5% higher in HPA-1b than HPA-1a cells in the presence of Mn2+ (n=6 independent experiments, p<0.01). To explore the molecular nature of this difference in terms of putative changes in the allostery of integrin αIIbβ3 with regard to the HPA-1 polymorphism, dynamic measurements were performed using fluorescence resonance energy transfer (FRET). The relative decrease in FRET signal, indicating spatial separation of the cytoplasmic tails of the α- and β-subunit as a consequence of integrin activation, was recorded every minute over 0.5 hrs in transfected HEK293 cells adherent onto fibrinogen. At every time point, the kinetic measurements revealed a significantly faster and more distict (> 5%) decrease in HPA-1b than in HPA-1a cells under static adhesion (p<0.009). Upon exposure of adherent HEK293 cells to increasing shear rates (stepwise elevation from 50 to 1600 sec-1 by doubling the initial shear rate every minute), the spatial separation of the integrin subunits occurred significantly faster and more distinct (> 10%) in HPA-1b (Pro33) than HPA-1a (Leu33) cells in response to shear (p<0.0014). Under the same conditions, the rate of HPA-1b cells still adherent onto immobilized fibrinogen was 80%, while the relative number of residual HPA-1a cells decreased to 20% upon exposure to 1600 sec-1 (p<0.0001). These displacement experiments suggest that the HPA-1b (Pro33) variant is more resistant to biomechanical stress than the HPA-1a (Leu33) isoform. Conclusions: Our findings suggest that the HPA-1 polymorphism can have a significant impact on the activation of αIIbβ3. This is evident from a higher outside-in signaling and a higher resistance to biomechanical stress upon exposure to increasing shear of HPA-1b (Pro33) in comparison with HPA-1a (Leu33) transfectants. The difference in spatial separation of the cytoplasmic tails of the integrin in response to activation, as demonstrated by FRET analyses under static and flow dynamic conditions, reflects allosteric changes that may contribute to the prothrombotic phenotype of the HPA-1b (Pro33) variant. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 281 (43) ◽  
pp. 32765-32773 ◽  
Author(s):  
Julie Bossuyt ◽  
Sanda Despa ◽  
Jody L. Martin ◽  
Donald M. Bers

Phospholemman (PLM) or FXYD1 is a major cardiac myocyte phosphorylation target upon adrenergic stimulation. Prior immunoprecipitation and functional studies suggest that phospholemman associates with the Na/K-pump (NKA) and mediates adrenergic Na/K-pump regulation. Here, we tested whether the NKA-PLM interaction is close enough to allow fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent (CFP/YFP) fusion proteins of Na/K pump and phospholemman and whether phospholemman phosphorylation alters such FRET. Co-expressed NKA-CFP and PLM-YFP in HEK293 cells co-localized in the plasma membrane and exhibited robust FRET. Selective acceptor photobleach increased donor fluorescence (FCFP) by 21.5 ± 4.1% (n = 13), an effect nearly abolished when co-expressing excess phospholemman lacking YFP. Activation of protein kinase C or A progressively and reversibly decreased FRET assessed by either the fluorescence ratio (FYFP/FCFP) or the enhancement of donor fluorescence after acceptor bleach. After protein kinase C activation, forskolin did not further reduce FRET, but after forskolin pretreatment, protein kinase C could still reduce FRET. This agreed with phospholemman phosphorylation measurements: by protein kinase C at both Ser-63 and Ser-68, but by protein kinase A only at Ser-68. Expression of PLM-YFP and PLM-CFP resulted in even stronger FRET than for NKA-PLM (FCFP increased by 37 ± 1% upon YFP photobleach), and this FRET was enhanced by phospholemman phosphorylation, consistent with phospholemman multimerization. Co-expressed PLM-CFP and Na/Ca exchange-YFP were highly membrane co-localized, but FRET was undetectable. We conclude that phospholemman and Na/K-pump are in very close proximity (FRET occurs) and that phospholemman phosphorylation alters the interaction of Na/K-pump and phospholemman.


Sign in / Sign up

Export Citation Format

Share Document