scholarly journals Action of Metformin on the Insulin-Signaling Pathway and on Glucose Transport in Human Granulosa Cells

2011 ◽  
Vol 25 (2) ◽  
pp. 373-374
Author(s):  
Suman Rice ◽  
Laura Pellatt ◽  
Stacey Bryan ◽  
Saffron Ann Whitehead ◽  
Helen Diane Mason

Abstract Context: Hyperinsulinemia in polycystic ovary syndrome is widely treated with the insulin sensitizer metformin, which, in addition to its systemic effects, directly affects the ovarian insulin-stimulated steroidogenesis pathway. Objective: Our aim was to investigate the interaction of metformin with the other insulin-stimulated ovarian pathway, namely that leading to glucose uptake. Design: Human granulosa-luteal cells were cultured with metformin (10−7m), insulin (10 ng/ml) or metformin and insulin (Met + Ins) combined. Insulin receptor (IR) involvement was assessed by culture with an (anti)-insulin receptor (IR) antibody. Main Outcome Measures: The effect of metformin on insulin-receptor substrate proteins 1 and 2 (IRS-1 and -2) mRNA and protein expression was determined. The KGN granulosa-cell line was used to investigate the effect of insulin and metformin on Akt activation and glucose transporter-4 (Glut-4) expression. Glut-4 translocation from the cytosol to the membrane was determined in cytoplasmic and membrane-enriched fractions of protein lysates. Results: IRS-1 mRNA and protein increased with all treatments. In contrast, basal IRS-2 mRNA levels were barely detectable, but transcription was up-regulated by metformin. The anti-IR antibody reduced treatment-stimulated IRS-1 to basal levels and IRS-2 expression to an even greater extent than IRS-1, showing greater dependence on the IR than IRS-1. Metformin in the presence of insulin activated Akt and this was dependent on phosphoinositide-3 kinase, as was translocation of Glut-4 to the membrane. Metformin was able to substantially enhance the insulin-stimulated translocation of Glut-4 transporters from the cytosol to the membrane. Conclusion: This net increase in Glut-4 transporters in the plasma membrane has the potential to increase glucose uptake and metabolism by granulosa cells of the insulin-resistant polycystic ovary, thereby facilitating follicle growth.

1998 ◽  
Vol 274 (5) ◽  
pp. R1446-R1453 ◽  
Author(s):  
T. S. David ◽  
P. A. Ortiz ◽  
T. R. Smith ◽  
J. Turinsky

Rat epididymal adipocytes were incubated with 0, 0.1, and 1 mU sphingomyelinase/ml for 30 or 60 min, and glucose uptake and GLUT-1 and GLUT-4 translocation were assessed. Adipocytes exposed to 1 mU sphingomyelinase/ml exhibited a 173% increase in glucose uptake. Sphingomyelinase had no effect on the abundance of GLUT-1 in the plasma membrane of adipocytes. In contrast, 1 mU sphingomyelinase/ml increased plasma membrane content of GLUT-4 by 120% and produced a simultaneous decrease in GLUT-4 abundance in the low-density microsomal fraction. Sphingomyelinase had no effect on tyrosine phosphorylation of either the insulin receptor β-subunit or the insulin receptor substrate-1, a signaling molecule in the insulin signaling pathway. It is concluded that the incubation of adipocytes with sphingomyelinase results in insulin-like translocation of GLUT-4 to the plasma membrane and that this translocation does not occur via the activation of the initial components of the insulin signaling pathway.


2001 ◽  
Vol 281 (5) ◽  
pp. E1101-E1109 ◽  
Author(s):  
María Agote ◽  
Luis Goya ◽  
Sonia Ramos ◽  
Carmen Alvarez ◽  
M. Lucía Gavete ◽  
...  

Undernutrition in rats impairs secretion of insulin but maintains glucose normotolerance, because muscle tissue presents an increased insulin-induced glucose uptake. We studied glucose transporters in gastrocnemius muscles from food-restricted and control anesthetized rats under basal and euglycemic hyperinsulinemic conditions. Muscle membranes were prepared by subcellular fractionation in sucrose gradients. Insulin-induced glucose uptake, estimated by a 2-deoxyglucose technique, was increased 4- and 12-fold in control and food-restricted rats, respectively. Muscle insulin receptor was increased, but phosphotyrosine-associated phosphatidylinositol 3-kinase activity stimulated by insulin was lower in undernourished rats, whereas insulin receptor substrate-1 content remained unaltered. The main glucose transporter in the muscle, GLUT-4, was severely reduced albeit more efficiently translocated in response to insulin in food-deprived rats. GLUT-1, GLUT-3, and GLUT-5, minor isoforms in skeletal muscle, were found increased in food-deprived rats. The rise in these minor glucose carriers, as well as the improvement in GLUT-4 recruitment, is probably insufficient to account for the insulin-induced increase in the uptake of glucose in undernourished rats, thereby suggesting possible changes in other steps required for glucose metabolism.


2009 ◽  
Vol 203 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Yun Wang ◽  
Patsy M Nishina ◽  
Jürgen K Naggert

The TALLYHO/Jng (TH) mouse strain is a polygenic model for type 2 diabetes (T2D) characterized by moderate obesity, impaired glucose tolerance and uptake, insulin resistance, and hyperinsulinemia. The goal of this study was to elucidate the molecular mechanisms responsible for the reduced glucose uptake and insulin resistance in the adipose tissue of this model. The translocation and localization of glucose transporter 4 (GLUT4) to the adipocyte plasma membrane were impaired in TH mice compared to control C57BL6/J (B6) mice. These defects were associated with decreased GLUT4 protein, reduced phosphatidylinositol 3-kinase activity, and alterations in the phosphorylation status of insulin receptor substrate 1 (IRS1). Activation of c-Jun N-terminal kinase 1/2, which can phosphorylate IRS1 on Ser307, was significantly higher in TH mice compared with B6 controls. IRS1 protein but not mRNA levels was found to be lower in TH mice than controls. Immunoprecipitation with anti-ubiquitin and western blot analysis of IRS1 protein revealed increased total IRS1 ubiquitination in adipose tissue of TH mice. Suppressor of cytokine signaling 1, known to promote IRS1 ubiquitination and subsequent degradation, was found at significantly higher levels in TH mice compared with B6. Immunohistochemistry showed that IRS1 colocalized with the 20S proteasome in proteasomal structures in TH adipocytes, supporting the notion that IRS1 is actively degraded. Our findings suggest that increased IRS1 degradation and subsequent impaired GLUT4 mobilization play a role in the reduced glucose uptake in insulin resistant TH mice. Since low-IRS1 levels are often observed in human T2D, the TH mouse is an attractive model to investigate mechanisms of insulin resistance and explore new treatments.


1994 ◽  
Vol 267 (3) ◽  
pp. E461-E466 ◽  
Author(s):  
S. Lund ◽  
A. Flyvbjerg ◽  
G. D. Holman ◽  
F. S. Larsen ◽  
O. Pedersen ◽  
...  

The acute effect of insulin-like growth factor I (IGF-I) and insulin on glucose uptake and the glucose transport system in in vitro incubated rat soleus muscles was examined using 3-O-methylglucose and the ATB-[3H]BMPA exofacial photolabeling technique. IGF-I and insulin both stimulated 3-O-methylglucose uptake and GLUT-4 translocation in a dose-dependent manner with a maximal effect six- to sevenfold above basal. No additive effects of IGF-I and insulin on maximal 3-O-methylglucose uptake were found. On a molar basis, IGF-I was 13 times less potent than insulin. Receptor binding experiments showed that IGF-I exhibited a much lower affinity for the insulin receptor [half-maximal effective dose (ED50) = 28.5 nM] than that of insulin (ED50 = 0.20 nM). In contrast, IGF-I bound to the partially purified IGF-I receptor with an apparent affinity (ED50 = 3.7 nM) that was similar to the concentrations of IGF-I which caused half-maximal activation of 3-O-methylglucose uptake (ED50 = 2.4 nM) and GLUT-4 translocation (ED50 = 2.5 nM). Our findings suggest that IGF-I exerts its insulin-like effects on glucose uptake primarily through its own specific receptor and that the molecular events underlying IGF-I and insulin actions on glucose uptake in skeletal muscle are similar, namely caused by a translocation of the GLUT-4 transporter from an intracellular pool to the cell surface.


1999 ◽  
Vol 277 (2) ◽  
pp. E259-E267 ◽  
Author(s):  
Bo Yu ◽  
Laurie A. Poirier ◽  
Laura E. Nagy

The insulin-responsive glucose transporter, GLUT-4, moves from an intracellular compartment to the cell surface in response to insulin and/or muscle contraction. Treatment of H9c2 myotubes with insulin significantly increased uptake of 2-deoxyglucose. Depolarization of the myotubes by increasing extracellular [K+], which mimics the initial phases of excitation-contraction coupling, also increased 2-deoxyglucose uptake. The K+- but not insulin-evoked increase was blocked by dantrolene, an inhibitor of Ca2+ release from the sarcoplasmic reticulum. In contrast, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, blocked insulin- but not K+-stimulated 2-deoxyglucose uptake. Increased glucose uptake in response to insulin or K+ depolarization was associated with increased GLUT-4 in plasma membranes and depletion of a population of small intracellular GLUT-4-containing vesicles. Similarly, in H9c2 cells transfected with c-myc-tagged GLUT-4, translocation of c-myc GLUT-4 to the cell surface was increased after stimulation with insulin or K+ depolarization. Taken together, these data demonstrate that insulin and K+ depolarization increase glucose uptake by recruiting GLUT-4 from intracellular vesicles to the plasma membrane of H9c2 myotubes via distinct signaling mechanisms.


1993 ◽  
Vol 264 (6) ◽  
pp. E890-E895 ◽  
Author(s):  
Y. Shimizu ◽  
H. Nikami ◽  
K. Tsukazaki ◽  
U. F. Machado ◽  
H. Yano ◽  
...  

Cold exposure has been shown to increase glucose uptake specifically in brown adipose tissue (BAT), the major site for sympathetically controlled metabolic heat production. In this study, the relationship between glucose uptake and glucose transporters (GLUT) was examined in rats exposed to cold for various periods. To minimize the stimulatory effect of circulating insulin, all animals were starved for 20-24 h before the measurements. Acute (4 h) cold exposure had no effect on protein and mRNA levels of GLUT-4, the predominant isoform of GLUT in BAT, despite a significant increase in cellular glucose uptake. Prolonged (1-10 days) cold exposure produced a parallel increase in GLUT-4 expression and glucose uptake in BAT. In contrast, cold exposure had no noticeable effect on GLUT-1, another isoform of GLUT in BAT, and on GLUT-4 in other insulin-sensitive tissues such as white adipose tissue and muscles. The increased glucose uptake and GLUT-4 expression were completely abolished after surgical sympathetic denervation. These findings suggest that cold exposure increases glucose uptake in BAT by at least two distinct mechanisms, both of which are dependent on sympathetic nerve: 1) an increase in the amount of GLUT-4 due to the stimulation of its de novo synthesis, and 2) an increase without stimulation of GLUT synthesis, probably due to the change in the transport activity of GLUT-4 and/or its translocation from an intracellular pool to the plasma membrane.


2007 ◽  
Vol 403 (2) ◽  
pp. 243-250 ◽  
Author(s):  
Seung H. Jung ◽  
Yun J. Ha ◽  
Eun K. Shim ◽  
Soo Y. Choi ◽  
Jing L. Jin ◽  
...  

Five pentacyclic triterpenoids isolated from Campsis grandiflora were tested for insulin-mimetic and insulin-sensitizing activity. The compounds enhanced the activity of insulin on tyrosine phosphorylation of the IR (insulin receptor) β-subunit in CHO/IR (Chinese-hamster ovary cells expressing human IR). Among the compounds tested, CG7 (ursolic acid) showed the greatest enhancement and CG11 (myrianthic acid) the least. We characterized the effect of CG7 further, and showed that it acted as an effective insulin-mimetic agent at doses above 50 μg/ml and as an insulin-sensitizer at doses as low as 1 μg/ml. Additional experiments showed that CG7 increased the number of IRs that were activated by insulin. This indicates that a major mechanism by which CG7 enhances total IR auto-phosphorylation is by promoting the tyrosine phosphorylation of additional IRs. CG7 not only potentiated insulin-mediated signalling (tyrosine phosphorylation of the IR β-subunit, phosphorylation of Akt and glycogen synthase kinase-3β), but also enhanced the effect of insulin on translocation of glucose transporter 4 in a classical insulin-sensitive cell line, 3T3-L1 adipocytes. The results of the present study demonstrate that a specific pentacyclic triterpenoid, CG7, exerts an insulin-sensitizing effect as an IR activator in CHO/IR cells and adipocytes. The enhancement of insulin activity by CG7 may be useful for developing a new class of specific IR activators for treatment of Type 1 and Type 2 diabetes.


1997 ◽  
Vol 273 (3) ◽  
pp. C1082-C1087 ◽  
Author(s):  
A. D. Lee ◽  
P. A. Hansen ◽  
J. Schluter ◽  
E. A. Gulve ◽  
J. Gao ◽  
...  

beta-Adrenergic stimulation has been reported to inhibit insulin-stimulated glucose transport in adipocytes. This effect has been attributed to a decrease in the intrinsic activity of the GLUT-4 isoform of the glucose transporter that is mediated by phosphorylation of GLUT-4. Early studies showed no inhibition of insulin-stimulated glucose transport by epinephrine in skeletal muscle. The purpose of this study was to determine the effect of epinephrine on GLUT-4 phosphorylation, and reevaluate the effect of beta-adrenergic stimulation on insulin-activated glucose transport, in skeletal muscle. We found that 1 microM epinephrine, which raised adenosine 3',5'-cyclic monophosphate approximately ninefold, resulted in GLUT-4 phosphorylation in rat skeletal muscle but had no inhibitory effect on insulin-stimulated 3-O-methyl-D-glucose (3-MG) transport. In contrast to 3-MG transport, the uptakes of 2-deoxyglucose and glucose were markedly inhibited by epinephrine treatment. This inhibitory effect was presumably mediated by stimulation of glycogenolysis, which resulted in an increase in glucose 6-phosphate concentration to levels known to severely inhibit hexokinase. We conclude that 1) beta-adrenergic stimulation decreases glucose uptake by raising glucose 6-phosphate concentration, thus inhibiting hexokinase, but does not inhibit insulin-stimulated glucose transport and 2) phosphorylation of GLUT-4 has no effect on glucose transport in skeletal muscle.


2002 ◽  
Vol 205 (23) ◽  
pp. 3739-3746 ◽  
Author(s):  
Naresh Kumar ◽  
Chinmoy S. Dey

SUMMARY Sulfonylurea drugs are used in the treatment of type 2 diabetes. The mechanism of action of sulfonylureas is to release insulin from pancreatic cells and they have been proposed to act on insulin-sensitive tissues to enhance glucose uptake. The goal of the present study was to test the hypothesis that gliclazide, a second-generation sulfonylurea, could enhance insulin signaling in insulin-resistant skeletal muscle cells. We demonstrated that gliclazide enhanced insulin-stimulated insulin receptor tyrosine phosphorylation in insulin-resistant skeletal muscle cells. Although insulin receptor substrate-1 tyrosine phosphorylation was unaffected by gliclazide treatment, phosphatidylinositol 3-kinase activity was partially restored by treatment with gliclazide. No increase in 2-deoxyglucose uptake in insulin-resistant cells by treatment with gliclazide was observed. Further investigations into the mitogen-activated protein kinase (MAPK) pathway revealed that insulin-stimulated p38 phosphorylation was impaired, as compared with extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase(JNK), which were phosphorylated normally in insulin-resistant cells. Treatment with gliclazide could not restore p38 phosphorylation in insulin-resistant cells. We propose that gliclazide can regulate part of the insulin signaling in insulin-resistant skeletal muscle, and p38 could be a potential therapeutic target for glucose uptake to treat insulin resistance.


1993 ◽  
Vol 264 (2) ◽  
pp. E167-E172 ◽  
Author(s):  
M. Kusunoki ◽  
L. H. Storlien ◽  
J. MacDessi ◽  
N. D. Oakes ◽  
C. Kennedy ◽  
...  

It is not generally known whether impaired stimulation of muscle glucose metabolism in insulin-resistant states is specific to insulin stimulation. Our aim was to examine whether glucose uptake responded normally to exercise and postexercise recovery in insulin-resistant high-fat-fed (HFF) rats. Three-week HFF or Chow-fed [control (Con)] adult rats were studied 5 days after cannulation. Before, during, or immediately after (recovery) 50 min of treadmill exercise, bolus 2-deoxy-[3H]glucose and [14C]glucose were administered to estimate muscle glucose uptake (R'g) and glycogen incorporation rates. Mean exercise and recovery plasma glucose levels were similar in HFF and Con rats. In hindlimb muscles sampled, exercise and recovery R'g were similar in HFF and Con (e.g., red quadriceps exercise 104 +/- 13 vs. 113 +/- 8, recovery 45.3 +/- 3.9 vs. 47.7 +/- 4.5 mumol.100 g-1.min-1, respectively). Moreover, muscle glucose transporter (GLUT-4) content was not reduced in HFF rats. Glycogen resynthesis accounted almost entirely for R'g during recovery and was equivalent between groups. We conclude that impaired muscle glucose uptake and glycogen synthesis in HFF rats are characteristic of insulin but not of exercise or postexercise stimulation.


Sign in / Sign up

Export Citation Format

Share Document