scholarly journals B-cell–targeted therapies in relapsing forms of MS

2017 ◽  
Vol 4 (6) ◽  
pp. e405 ◽  
Author(s):  
Divyanshu Dubey ◽  
Thomas Forsthuber ◽  
Eoin P. Flanagan ◽  
Sean J. Pittock ◽  
Olaf Stüve

In recent years, there has been a significant increase in the therapeutic options available for the management of relapsing forms of MS. Therapies primarily targeting B cells, including therapeutic anti-CD20 monoclonal antibodies, have been evaluated in phase I, phase II, and phase III clinical trials. Results of these trials have shown their efficacy and relatively tolerable adverse effect profiles, suggesting a favorable benefit-to-risk ratio. In this review, we discuss the pathogenic role of B cells in MS and the rationale behind the utilization of B-cell depletion as a therapeutic cellular option. We also discuss the data of clinical trials for anti-CD20 antibodies in relapsing forms of MS and existing evidence for other B-cell–directed therapeutic strategies.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4977-4977
Author(s):  
Jennifer Wayne ◽  
Kristen N. Ganjoo ◽  
Andres Forero ◽  
Brad Pohlman ◽  
Sven de Vos ◽  
...  

Abstract Abstract 4977 Sustained Depletion of B-Cells by a Humanized, Fc-Engineered Anti-CD20 Antibody, AME-133v, in Patients with Relapsed Follicular Lymphoma J Wayne,1 K Ganjoo,2 A Forero,3 B Pohlman,4 S de Vos,5 S Carpenter,6 J Wooldridge,6 S Marulappa,1 V Jain11Mentrik Biotech, LLC, Dallas, TX, 2Standford University Medical Center, Stanford, CA, 3Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL,4Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, 5David Geffen School of Medicine at University of California, Los Angeles, CA, 6Eli Lilly and Company, Indianapolis, Indiana Introduction AME-133v is a humanized anti-CD20 monoclonal antibody that has a 13 to 20-fold increase in binding affinity and approximately 6-fold more potent effector function in antibody-dependent cell-mediated cytotoxicity (ADCC) compared to rituximab. Phase I/II clinical trials of AME-133v in patients with relapsed follicular lymphoma have demonstrated an overall response rate of greater than 30% with a complete response rate of 16%. The extent and duration of depletion of CD19+ B-cells in peripheral blood was used as a surrogate of therapeutic levels of AME-133v. Analysis from the Phase I/II clinical trials is presented in this report. Methods CD-19 positive B-cells in peripheral blood were measured in 77 patients with relapsed follicular lymphoma enrolled in two phase I/II clinical trials of AME-133v. These studies assessed five different doses of AME-133v (from 2 mg/m2 to 375 mg/m2). AME-133v was administered intravenously four times at weekly intervals in both trials. Blood samples were taken at multiple time points throughout the trial and a central lab measured levels of circulating CD19+ B-cells using fluorescence-activated cell sorting (FACS). Results Excluding the four patients enrolled in the 2 mg/m2 dose cohort, depletion of peripheral B-cells occurred in all patients and was sustained over time (Table 1). Baseline levels of B-cell counts ranged from 4 × 103 to 1,187 × 103 cells/μL, with an average of 102 × 103 cells/μL and a median of 60 × 103 cells/μL. Within 24 hours of the first infusion, all patients had depletion of circulating B-cells; ninety-six percent of patients had less than 10 × 103 cells/μL and two patients had less than 20 × 103 cells/μL. Interestingly, AME-133v was effective at depleting B-cells even at doses as low as 7.5 mg/m2. To assess sustainability of B-cell depletion after four doses of AME-133v, CD19+ cell counts were evaluated at nine weeks after the fourth infusion and every three months thereafter. Complete depletion of CD19+ lymphocytes was sustained for nine weeks. At five months after the last infusion of AME-133v, nearly two-thirds of patients had no detectable circulating B-cells. Sustained B-cell depletion lasted for at least eight months following the last infusion in 63% of patients. Table 1. B-cell counts for all patients in 7.5, 30, 100 and 375 mg/m2 cohorts. Percentages are cumulative Time Point Cell Count (x 103 cells/μL) 0 < 1 2 to 10 11 to 30 31 to 50 < 100 Day 1 (24 hours after last infusion) 62 % 66 % 96 % 100 % 100% 100% Day 7 (day of infusion 2) 75% 80% 95% 97% 97% 98% Day 28 (1 week after last infusion) 78 % 87% 95% 98% 98% 100% Day 84 (9 weeks after last infusion) 78% 87% 91% 96% 96% 98% Day 174 (5 months after last infusion) 60% 60% 70% 86% 93% 100% Day 264 (8 months after last infusion) 26% 26% 41% 63% 81% 89% Day 354 (11 months after last infusion) 0% 0% 15% 40% 55% 80% DEMOGRAPHIC CHARACTERISTICS (EVALUABLE POPULATION) “\f C \l 1 Demographic and Disease Characteristics on evaluable population (N=30) Conclusion The rapid and sustained effect of AME-133v on B-cell depletion, even in low-affinity FcγRIIIa patients, indicates a potentially relevant biological activity of the antibody in treating B-cell non-Hodgkin lymphoma. Notably, this depletion occurred even at very low doses of drug administration and persisted over time. This may be related to its higher affinity for CD20, increased ADCC, or both. The sustained B-cell depletion may result in prolonged clinical response and might mitigate the need for maintenance therapy. A randomized trial is being planned to compare efficacy of AME-133v vs. rituximab. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2341-2341
Author(s):  
Jakub Golab ◽  
Magdalena Winiarska ◽  
Jacek Bil ◽  
Ewa Wilczek ◽  
Grzegorz Wilczynski ◽  
...  

Abstract A number of monoclonal antibodies (mAb) are presently in development or approved for CD20-directed immunotherapy. Ofatumumab, a human IgG1 anti-CD20 mAb, is currently being evaluated in phase III clinical trials for B-CLL and FL, and in phase II clinical trials for rheumatoid arthritis (RA). Rituximab, a chimeric IgG1 anti-CD20 mAb, has been approved for 1st line treatment of CD20-positive B cell lymphomas alone or in combination with chemotherapy, and in RA. Virtually all rituximab-treated patients relapse after single-agent treatment. The clinical efficacy of rituximab might be further improved by combinations with other drugs such as statins that inhibit cholesterol synthesis and show promising anti-lymphoma effects. We studied the influence of statins on ofatumumab- and rituximab-mediated cytotoxicity. Surprisingly, B cells incubated with statins showed decreased rather than increased CD20 mAb-mediated complement-dependent cytotoxicity (CDC) in cell viability assays. However, cell lysis of statin-treated B cells remained higher when using ofatumumab in comparison to rituximab. Statins decreased CD20 immunostaining in flow cytometry but did not affect total cellular CD20 levels when compared to non-treated cells. Incubation of B cells with other cholesterol depleting agents (methyl-β-cyclodextrin (MβCD) and berberine) established that the presence of plasma membrane cholesterol and not lipid rafts may be required for CD20 mAb-mediated CDC. Cholesterol restitution reversed ofatumumab- and rituximab-mediated CDC and CD20 mAb staining. Statin incubation resulted in conformational changes of CD20 and impaired binding of CD20 mAb to the CD20 molecule as observed by atomic force microscopy. Freshly isolated cells of 4 B cell lymphoma patients were treated with the cholesterol-depleting agent MβCD, and CD20 mAb (B9E9) binding and rituximab-mediated CDC were significantly decreased (P&lt;0.05 t-test, versus control) In addition, 5 hypercholesterolemia patients were treated with atorvastatin. Ofatumumab binding to freshly isolated B cells was found decreased in all patients upon statin treatment (P&lt;0.01, paired t-test). Based on these data, statins may interfere with CD20 detection and anti-lymphoma activity of CD20 mAb and may have significant clinical implications as impaired mAb binding to CD20 conformational epitopes elicited by statins may delay diagnosis, postpone treatment or impair anti-lymphoma activity of CD20 mAb. MAb which are less sensitive to such changes may minimize possible effects of statins on mAb-mediated immunotherapy in these patients.


Blood ◽  
2010 ◽  
Vol 116 (4) ◽  
pp. 515-521 ◽  
Author(s):  
Olivier Thaunat ◽  
Emmanuel Morelon ◽  
Thierry Defrance

Abstract Accumulating evidence has designated B cells as central players in the pathogenesis of immune diseases. In the late 1990s, anti-CD20 monoclonal antibodies were developed for the treatment of B-cell non-Hodgkin lymphomas, offering the opportunity to efficiently deplete the B-cell compartment for therapeutic immunointerventions. Several studies have since established the beneficial effect of this drug on the course of a wide range of immune diseases. However, paradoxically, it has also been reported that rituximab sometimes worsens the symptoms of the very same conditions. The explanation that reconciles such apparently conflicting results has recently emerged from basic studies, which demonstrate that (1) B cells are also endowed with immune-regulatory properties and (2) the opposing contributions of B cells may overlap during the course of the disease. Caution should therefore be exercised when considering B-cell depletion because the therapeutic effect will depend on the relative contributions of the opposing B-cell activities at the time of the drug administration.


Rheumatology ◽  
2020 ◽  
Vol 59 (Supplement_3) ◽  
pp. iii68-iii73
Author(s):  
Alexandre Karras ◽  
Hélène Lazareth ◽  
Sophie Chauvet

Abstract The pivotal role of B-cells in ANCA-associated vasculitis has been suggested by experimental data that demonstrate the direct pathogenicity of ANCAs. Rituximab (RTX), an anti-CD20 monoclonal antibody that targets B-cells, has proven its efficacy for induction of remission in severe ANCA vasculitis. RTX is equivalent to CYC for induction of remission, and is probably superior in relapsing patients. Long-term B cell depletion by prolonged RTX treatment has been shown to significantly reduce the relapse rate, when compared with AZA maintenance therapy. Biomarkers, such as B-cell subpopulations or ANCA monitoring, may help the clinician to determine the optimal dose and duration of RTX therapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Charles A. Roach ◽  
Anne H. Cross

Several clinical trials have demonstrated the efficacy of lytic therapies targeting B cells in the treatment of relapsing multiple sclerosis (MS). More modest efficacy has been noted in the primary progressive subtype of MS. Clinical success has increased interest in the role of B cells in the pathogenesis of MS and in ways to potentially improve upon current B cell therapies. In this mini review, we will critically review previous and ongoing clinical trials of anti-CD20 monoclonal antibodies in MS, including rituximab, ocrelizumab, ofatumumab, and ublituximab. Side effects and adverse event profiles will be discussed. Studies examining the proposed mechanisms of action of B cell depleting therapies will also be reviewed.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2282-2282
Author(s):  
Edmund A Rossi ◽  
Rosana Michel ◽  
Chien-Hsing Chang ◽  
David M Goldenberg

Abstract Background The humanized anti-CD22 antibody, epratuzumab, has demonstrated therapeutic activity in clinical trials of lymphoma and autoimmune diseases (AIDs), treating currently over 1500 cases of non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemias, Waldenström's macroglobulinemia, Sjögren's syndrome, and systemic lupus erythematosus (SLE). Because epratuzumab, which is currently in worldwide Phase III registration trials for SLE, reduces on average only 35% of circulating B cells in patients, and has minimal antibody-dependent cellular cytotoxicity (ADCC) and negligible complement-dependent cytotoxicity (CDC) when evaluated in vitro, its therapeutic activity may not result completely from B-cell depletion. Instead, ligation of epratuzumab to CD22 could modulate other surface molecules involved in regulating B-cell antigen receptor (BCR) signaling, activation, homing, and re-circulation, leading to altered B-cell functions that ultimately mitigate symptoms of the underlying diseases. We reported recently that epratuzumab mediates Fc/FcR-dependent membrane transfer from B cells to effector cells via trogocytosis, resulting in a substantial reduction of multiple BCR modulators, including CD22, CD19, CD21, and CD79b, as well as key cell adhesion molecules, including CD44, CD62L, and b7 integrin, on the surface of B cells in peripheral blood mononuclear cells (PBMCs) obtained from normal donors or SLE patients, and of NHL cells spiked into normal PBMCs (Rossi et al., Blood 2013 PMID: 23821660). Rituxmab has clinical efficacy in SLE, but failed to achieve primary endpoints in a Phase III trial. Here we show for the first time that a bispecific hexavalent antibody (bsHexAb), comprising epratuzumab and veltuzumab (humanized anti-CD20), exhibits enhanced trogocytosis compared to epratuzumab, with considerably less B-cell depletion than observed with anti CD20 mAbs. Methods and Results A pair of bsHexAbs were generated using DOCK-AND-LOCKTM (DNLTM) to comprise epratuzumab fused with four additional Fab fragments of either veltuzumab [designated 22*-(20)-(20)] or of a humanized anti-CD19 mAb [22*-(19)-(19)]. PBMCs were incubated with the bsHexAbs or the parental mAbs (10 µg/mL) overnight, and the relative surface levels of the key antigens were analyzed by flow cytometry. The 22*-(20)-(20) exhibited the broadest and most extensive trogocytosis, reducing each of CD22, CD20, CD19, CD21, CD79b, CD44, CD62L, and Beta-7 integrin more than epratuzumab, and to a similar extent as veltuzumab, except for CD22, which was much lower with the 22*-(20)-(20) (Table 1). In general, 22*-(19)-(19) showed intermediate trogocytosis, with less antigen reduction than 22*-(20)-(20), but more than epratuzumab. Veltuzumab and rituximab caused considerable (40-50%) B-cell depletion in the ex-vivo assay. Alternatively, epratuzumab, hA19, and both bsAbs did not significantly deplete B cells. ADCC, which is presumably, the primary mechanism of B-cell depletion in the ex-vivo assay, is less potent for 22*-(20)-(20), compared to veltuzumab. CDC, which along with ADCC is an important mechanism for B-cell depletion in vivo, is ∼25-fold less potent for 22*-(20)-(20) compared to veltuzumab. Epratuzumab has minimal CDC and ADCC. Conclusion The bsHexAb 22*-(20)-(20) is an excellent candidate for treatment of SLE and other AIDs due to its ability to mediate potent trogocytosis without wholesale depletion of B cells, which leads to increased risk of serious infections associated with anti-CD20 therapy. Disclosures: Rossi: Immunomedics, Inc.: Employment. Michel:Immunomedics, Inc.: Employment. Chang:Immunomedics, Inc: Employment, Stock option Other; IBC Pharmaceuticals, Inc.: Employment, Stock option, Stock option Other. Goldenberg:Immunomedics: Employment, stock options, stock options Patents & Royalties.


2019 ◽  
Vol 34 (7) ◽  
pp. 1225-1234 ◽  
Author(s):  
L G C Riccio ◽  
M Jeljeli ◽  
P Santulli ◽  
S Chouzenoux ◽  
L Doridot ◽  
...  

Abstract STUDY QUESTION What are the effects of B lymphocyte inactivation or depletion on the progression of endometriosis? SUMMARY ANSWER Skewing activated B cells toward regulatory B cells (Bregs) by Bruton’s tyrosine kinase (Btk) inhibition using Ibrutinib prevents endometriosis progression in mice while B cell depletion using an anti-CD20 antibody has no effect. WHAT IS KNOWN ALREADY A polyclonal activation of B cells and the presence of anti-endometrial autoantibodies have been described in a large proportion of women with endometriosis though their exact role in the disease mechanisms remains unclear. STUDY DESIGN, SIZE, DURATION This study included comparison of endometriosis progression for 21 days in control mice versus animals treated with the anti-CD20 depleting antibody or with the Btk inhibitor Ibrutinib that prevents B cell activation. PARTICIPANTS/MATERIALS, SETTING, METHODS After syngeneic endometrial transplantation, murine endometriotic lesions were compared between treated and control mice using volume, weight, ultrasonography, histology and target genes expression in lesions. Phenotyping of activated and regulatory B cells, T lymphocytes and macrophages was performed by flow cytometry on isolated spleen and peritoneal cells. Cytokines were assayed by ELISA. MAIN RESULTS AND THE ROLE OF CHANCE Btk inhibitor Ibrutinib prevented lesion growth, reduced mRNA expression of cyclooxygenase-2, alpha smooth muscle actin and type I collagen in the lesions and skewed activated B cells toward Bregs in the spleen and peritoneal cavity of mice with endometriosis. In addition, the number of M2 macrophages decreased in the peritoneal cavity of Ibrutinib-treated mice compared to anti-CD20 and control mice. Depletion of B cells using an anti-CD20 antibody had no effect on activity and growth of endometriotic lesions and neither on the macrophages, compared to control mice. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION It is still unclear whether B cell depletion by the anti-CD20 or inactivation by Ibrutinib can prevent establishment and/or progression of endometriosis in humans. WIDER IMPLICATIONS OF THE FINDINGS Further investigation may contribute to clarifying the role of B cell subsets in human endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by a grant of Institut National de la Santé et de la Recherche Médicale and Paris Descartes University. None of the authors has any conflict of interest to disclose.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Asuka Tanaka ◽  
Kentaro Ide ◽  
Yuka Tanaka ◽  
Masahiro Ohira ◽  
Hiroyuki Tahara ◽  
...  

AbstractPretransplant desensitization with rituximab has been applied to preformed donor-specific anti-human leukocyte antigen antibody (DSA)-positive recipients for elimination of preformed DSA. We investigated the impact of pretransplant desensitization with rituximab on anti-donor T cell responses in DSA-positive transplant recipients. To monitor the patients’ immune status, mixed lymphocyte reaction (MLR) assays were performed before and after desensitization with rituximab. Two weeks after rituximab administration, the stimulation index (SI) of anti-donor CD4+ T cells was significantly higher in the DSA-positive recipients than in the DSA-negative recipients. To investigate the mechanisms of anti-donor hyper responses of CD4+ T cells after B cell depletion, highly sensitized mice models were injected with anti-CD20 mAb to eliminate B cells. Consistent with clinical observations, the SI values of anti-donor CD4+ T cells were significantly increased after anti-CD20 mAb injection in the sensitized mice models. Adding B cells isolated from untreated sensitized mice to MLR significantly inhibited the enhancement of anti-donor CD4+ T cell response. The depletion of the CD5+ B cell subset, which exclusively included IL-10-positive cells, from the additive B cells abrogated such inhibitory effects. These findings demonstrate that IL-10+ CD5+ B cells suppress the excessive response of anti-donor CD4+ T cells responses in sensitized recipients.


2019 ◽  
Vol 11 (482) ◽  
pp. eaav1648 ◽  
Author(s):  
Rita Kansal ◽  
Noah Richardson ◽  
Indira Neeli ◽  
Saleem Khawaja ◽  
Damian Chamberlain ◽  
...  

The failure of anti-CD20 antibody (Rituximab) as therapy for lupus may be attributed to the transient and incomplete B cell depletion achieved in clinical trials. Here, using an alternative approach, we report that complete and sustained CD19+ B cell depletion is a highly effective therapy in lupus models. CD8+ T cells expressing CD19-targeted chimeric antigen receptors (CARs) persistently depleted CD19+ B cells, eliminated autoantibody production, reversed disease manifestations in target organs, and extended life spans well beyond normal in the (NZB × NZW) F1 and MRLfas/fas mouse models of lupus. CAR T cells were active for 1 year in vivo and were enriched in the CD44+CD62L+ T cell subset. Adoptively transferred splenic T cells from CAR T cell–treated mice depleted CD19+ B cells and reduced disease in naive autoimmune mice, indicating that disease control was cell-mediated. Sustained B cell depletion with CD19-targeted CAR T cell immunotherapy is a stable and effective strategy to treat murine lupus, and its effectiveness should be explored in clinical trials for lupus.


Sign in / Sign up

Export Citation Format

Share Document