scholarly journals Dimethyl fumarate as a first- vs second-line therapy in MS

2018 ◽  
Vol 5 (6) ◽  
pp. e508 ◽  
Author(s):  
Elsebeth Staun-Ram ◽  
Eiman Najjar ◽  
Anat Volkowich ◽  
Ariel Miller

ObjectiveTo elucidate the immunomodulatory effects of dimethyl fumarate (DMF) on B cells in patients with relapsing MS receiving DMF as a “1st-line” vs “2nd-line” therapy.MethodsB cells were isolated from 43 patients with MS at baseline and after 15-week DMF therapy. Phenotype and functional markers and cytokine profile were assessed by flow cytometry. Analysis included clinical and MRI parameters recorded during a 1-year follow-up.Results1st-line and 2nd-line patients presented several differences in their baseline immune profile, which corresponded with differences in their immunologic response to DMF treatment. DMF reduced the proportions of B cells and CD8 T cells whereas increased monocytes. DMF reduced memory B cells, including plasma cells in 2nd-line patients only, whereas strongly increased transitional B cells. Several IL10+ B-cell subsets and TGFβ+ B cells were increased. Proinflammatory LTα+ and TNFα+ B cells were reduced, while IL4+ B cells elevated, whereas IFNγ+ B cells showed opposite effects in 1st-line and 2nd-line patients. HLA and ICAM-1 expression was increased, but % CD86+ B cells reduced. The expression of B-cell activating factor receptor and the proportion of activated CD69 B cells were increased.ConclusionsDMF is associated with increased transitional and IL10+ and TGFβ+ regulatory B cells and a shift toward a more anti-inflammatory immune profile. Cell activation with reduced costimulatory capacity may induce immune hyporesponsiveness. Carryover effects of preceding therapies in 2nd-line patients and the stage of disease influence the immune profile of the patients and the immunomodulatory effects of DMF.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 895.2-895
Author(s):  
S. Hannawi ◽  
F. Alqutami ◽  
M. Y. Hachim

Background:Changes in the B cell subpopulations is a hallmark of the antiviral response against SARS-CoV-2 and is associated with COVID-19 severity (1). Recently our group showed common derangement observed in rheumatoid arthritis (RA) and COVID-19 (2). In RA, synovium attracts potentially autoreactive—B cells and plasma cells that play a central role in RA pathogenesis (3). We were interested to know the similarity in B cell’s transcriptomic changes specific to RA and COVID-19.Objectives:Identify similar upregulated genes in synovium and B cells in RA and at the same time are differentially expressed in B cells infected with SARS-CoV-2 or from COVID-19 patients.Methods:RNAseq dataset (GSE89408) of (218) samples isolated from joint synovial biopsies from subjects with and without rheumatoid arthritis were retrieved from GEO online database. Differentially expressed genes (DRGs) specific to RA were identified after exclusion of those upregulated in Osteoarthritis or other joint condition samples in the same dataset. The RA specific genes were intersected with DEGs between B cells from healthy versus RA as extracted from (GSE110999) dataset. The shortlisted genes specifically upregulated in B cells of RA were identified and were explored in B cells COVID-19 transcriptome datasets using (https://metascape.org/COVID).Results:60 genes were found to be specifically upregulated in RA synovium and B cells and are changed in B cells infected with SARS-CoV-2 or from COVID-19 patients, Figure (1-A). Those genes were involved in interferon signaling, antiviral and immune cell activation. RASGRP1 was common between B cells of RA and COVID-19 and might play a role in the pathogenesis of both, Figure (1-B). RASGRP1 controls ERK/MAPK kinase cascade needed in B-/T-cell differentiation and development. It is vital to protect against viral infection and the autoimmune associated proliferation of activated T-cells like RA (4). We checked its level in another dataset (GSE152641) of the whole blood RNASeq of 62 COVID-19 patients and 24 healthy controls. RASGRP1 was significantly down in COVID-19 compared to healthy control, Figure (1-C).Conclusion:SARS-CoV-2 impair B and T’s cells’ immune response through its action on RASGRP1 and that can be a novel mechanistic explanation of how the virus decreases immune cells and impair the B cell’s humoral immunity.References:[1]Sosa-Hernández VA, Torres-Ruíz J, Cervantes-Díaz R, Romero-Ramírez S, Páez-Franco JC, Meza-Sánchez DE, et al. B Cell Subsets as Severity-Associated Signatures in COVID-19 Patients. Frontiers in Immunology. 2020;11(3244).[2]Hachim MY, Hachim IY, Naeem KB, Hannawi H, Al Salmi I, Hannawi S. C-C chemokine receptor type 5 links COVID-19, rheumatoid arthritis, and Hydroxychloroquine: in silico analysis. Translational Medicine Communications. 2020;5(1):14.[3]Doorenspleet ME, Klarenbeek PL, de Hair MJ, van Schaik BD, Esveldt RE, van Kampen AH, et al. Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Ann Rheum Dis. 2014;73(4):756-62.[4]Molineros JE, Singh B, Terao C, Okada Y, Kaplan J, McDaniel B, et al. Mechanistic Characterization of RASGRP1 Variants Identifies an hnRNP-K-Regulated Transcriptional Enhancer Contributing to SLE Susceptibility. Frontiers in Immunology. 2019;10(1066).Disclosure of Interests:None declared


Author(s):  
Thomas Dörner ◽  
Peter E. Lipsky

B cells have gained interest in rheumatoid arthritis (RA) beyond being the precursors of antibody-producing plasma cells since they are also a broader component of the adaptive immune system. They are capable of functioning as antigen-presenting cells for T-cell activation and can produce an array of cytokines. Disturbances of peripheral B-cell homeostasis together with the formation of ectopic lymphoid neogenesis within the inflamed synovium appears to be a characteristic of patients with RA. Enhanced generation of memory B cells and autoreactive plasma cells producing IgM-RF and ACPA-IgG antibodies together with formation of immune complexes contribute to the maintenance of RA, whereas treatment with B-cell-directed anti-CD20 and CLTA4-Ig therapy provides clinical benefit.


2020 ◽  
Vol 32 (6) ◽  
pp. 385-395
Author(s):  
Tadahiro Kodama ◽  
Mika Hasegawa ◽  
Yui Sakamoto ◽  
Kei Haniuda ◽  
Daisuke Kitamura

Abstract Upon antigen stimulation, IgG+ B cells rapidly proliferate and differentiate into plasma cells, which has been attributed to the characteristics of membrane-bound IgG (mIgG), but the underlying molecular mechanisms remain elusive. We have found that a part of mouse mIgG1 is ubiquitinated through the two responsible lysine residues (K378 and K386) in its cytoplasmic tail and this ubiquitination is augmented upon antigen stimulation. The ubiquitination of mIgG1 involves its immunoglobulin tail tyrosine (ITT) motif, Syk/Src-family kinases and Cbl proteins. Analysis of a ubiquitination-defective mutant of mIgG1 revealed that ubiquitination of mIgG1 facilitates its ligand-induced endocytosis and intracellular trafficking from early endosome to late endosome, and also prohibits the recycling pathway, thus attenuating the surface expression level of mIgG1. Accordingly, ligation-induced activation of B-cell receptor (BCR) signalling molecules is attenuated by the mIgG1 ubiquitination, except MAP kinase p38 whose activation is up-regulated due to the ubiquitination-mediated prohibition of mIgG1 recycling. Adaptive transfer experiments demonstrated that ubiquitination of mIgG1 facilitates expansion of germinal centre B cells. These results indicate that mIgG1-mediated signalling and cell activation is regulated by ubiquitination of mIgG1, and such regulation may play a role in expansion of germinal centre B cells.


2005 ◽  
Vol 201 (6) ◽  
pp. 993-1005 ◽  
Author(s):  
Dominique Gatto ◽  
Thomas Pfister ◽  
Andrea Jegerlehner ◽  
Stephen W. Martin ◽  
Manfred Kopf ◽  
...  

Humoral immune responses are thought to be enhanced by complement-mediated recruitment of the CD21–CD19–CD81 coreceptor complex into the B cell antigen receptor (BCR) complex, which lowers the threshold of B cell activation and increases the survival and proliferative capacity of responding B cells. To investigate the role of the CD21–CD35 complement receptors in the generation of B cell memory, we analyzed the response against viral particles derived from the bacteriophage Qβ in mice deficient in CD21–CD35 (Cr2−/−). Despite highly efficient induction of early antibody responses and germinal center (GC) reactions to immunization with Qβ, Cr2−/− mice exhibited impaired antibody persistence paralleled by a strongly reduced development of bone marrow plasma cells. Surprisingly, antigen-specific memory B cells were essentially normal in these mice. In the absence of CD21-mediated costimulation, Qβ-specific post-GC B cells failed to induce the transcriptional regulators Blimp-1 and XBP-1 driving plasma cell differentiation, and the antiapoptotic protein Bcl-2, which resulted in failure to generate the precursor population of long-lived plasma cells residing in the bone marrow. These results suggest that complement receptors maintain antibody responses by delivery of differentiation and survival signals to precursors of bone marrow plasma cells.


Author(s):  
Tin Kyaw ◽  
Paula Loveland ◽  
Peter Kanellakis ◽  
Anh Cao ◽  
Axel Kallies ◽  
...  

Abstract Aims  Myocardial infarction (MI) accelerates atherosclerosis and greatly increases the risk of recurrent cardiovascular events for many years, in particular, strokes and MIs. Because B cell-derived autoantibodies produced in response to MI also persist for years, we investigated the role of B cells in adaptive immune responses to MI. Methods and results  We used an apolipoprotein-E-deficient (ApoE−/−) mouse model of MI-accelerated atherosclerosis to assess the importance of B cells. One week after inducing MI in atherosclerotic mice, we depleted B cells using an anti-CD20 antibody. This treatment prevented subsequent immunoglobulin G accumulation in plaques and MI-induced accelerated atherosclerosis. In gain of function experiments, we purified spleen B cells from mice 1 week after inducing MI and transferred these cells into atherosclerotic ApoE−/− mice, which greatly increased immunoglobulin G (IgG) accumulation in plaque and accelerated atherosclerosis. These B cells expressed many cytokines that promote humoural immunity and in addition, they formed germinal centres within the spleen where they differentiated into antibody-producing plasma cells. Specifically deleting Blimp-1 in B cells, the transcriptional regulator that drives their terminal differentiation into antibody-producing plasma cells prevented MI-accelerated atherosclerosis. Alarmins released from infarcted hearts were responsible for activating B cells via toll-like receptors and deleting MyD88, the canonical adaptor protein for inflammatory signalling downstream of toll-like receptors, prevented B-cell activation and MI-accelerated atherosclerosis. Conclusion  Our data implicate early B-cell activation and autoantibodies as a central cause for accelerated atherosclerosis post-MI and identifies novel therapeutic strategies towards preventing recurrent cardiovascular events such as MI and stroke.


2017 ◽  
Vol 114 (44) ◽  
pp. E9328-E9337 ◽  
Author(s):  
Dan Su ◽  
Stijn Vanhee ◽  
Rebeca Soria ◽  
Elin Jaensson Gyllenbäck ◽  
Linda M. Starnes ◽  
...  

B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.


2011 ◽  
Vol 07 (02) ◽  
pp. 130
Author(s):  
Mario Salvi ◽  
Guia Vannucchi ◽  
Paolo Beck-Peccoz ◽  
◽  
◽  
...  

The contribution of B-cells to human autoimmune disease has recently been underscored because of the therapeutic benefit of B-cell depleting therapies. B-cells are involved in the production of autoantibodies, and in CD4+ T-cell activation, control of T-cell function, and inflammation through cytokine production. B-cells are also important antigen-presenting cells. Rituximab (RTX) has been used off-label in various autoimmune disorders and has been shown to effectively deplete mature and memory CD20+ B-cells, but not long-lived plasma cells. The rationale behind the use of RTX in Graves’ disease (GD) and Graves’ orbitopathy (GO) relies on its putative effect on pathogenic autoantibodies causing hyperthyroidism. RTX in patients with active GO has been shown to have a significant effect on the inflammatory activity and severity of GO. However, caution is suggested before proposing RTX as a novel therapeutic tool in this disease until randomized controlled trials are available. Should preliminary observations be confirmed, an optimal strategy for controlling the progression of GO would be to pursue B-cell depletion shortly after diagnosis, rather than only as an alternative therapeutic option when standard immunosuppression has failed.


Blood ◽  
2019 ◽  
Vol 133 (24) ◽  
pp. 2597-2609 ◽  
Author(s):  
Stefanie Sperling ◽  
Petra Fiedler ◽  
Markus Lechner ◽  
Anna Pollithy ◽  
Stefanie Ehrenberg ◽  
...  

Abstract CD30 is expressed on a variety of B-cell lymphomas, such as Hodgkin lymphoma, primary effusion lymphoma, and a diffuse large B-cell lymphoma subgroup. In normal tissues, CD30 is expressed on some activated B and T lymphocytes. However, the physiological function of CD30 signaling and its contribution to the generation of CD30+ lymphomas are still poorly understood. To gain a better understanding of CD30 signaling in B cells, we studied the expression of CD30 in different murine B-cell populations. We show that B1 cells expressed higher levels of CD30 than B2 cells and that CD30 was upregulated in IRF4+ plasmablasts (PBs). Furthermore, we generated and analyzed mice expressing a constitutively active CD30 receptor in B lymphocytes. These mice displayed an increase in B1 cells in the peritoneal cavity (PerC) and secondary lymphoid organs as well as increased numbers of plasma cells (PCs). TI-2 immunization resulted in a further expansion of B1 cells and PCs. We provide evidence that the expanded B1 population in the spleen included a fraction of PBs. CD30 signals seemed to enhance PC differentiation by increasing activation of NF-κB and promoting higher levels of phosphorylated STAT3 and STAT6 and nuclear IRF4. In addition, chronic CD30 signaling led to B-cell lymphomagenesis in aged mice. These lymphomas were localized in the spleen and PerC and had a B1-like/plasmablastic phenotype. We conclude that our mouse model mirrors chronic B-cell activation with increased numbers of CD30+ lymphocytes and provides experimental proof that chronic CD30 signaling increases the risk of B-cell lymphomagenesis.


2008 ◽  
Vol 2 ◽  
pp. CMO.S615 ◽  
Author(s):  
Linda M. Pilarski ◽  
Eva Baigorri ◽  
Michael J. Mant ◽  
Patrick M. Pilarski ◽  
Penelope Adamson ◽  
...  

Potential progenitor B cell compartments in multiple myeloma (MM) are clinically important. MM B cells and some circulating MM plasma cells express CD20, predicting their clearance by treatment with anti-CD20. Here we describe two types of clonotypic CD20+ B cell in peripheral blood of myeloma patients, identified by their expression of CD19 and CD20 epitopes, their expression of CD45RA and their light scatter properties. Thus, the circulating component of the MM clone includes at least two distinct CD19+ CD20+ B cell compartments, as well as CD138+CD20+ plasma cells. To determine whether either or both B cell subsets and the CD20+ plasma cell subset were depleted by anti-CD20 therapy, they were evaluated before, during and after treatment of patients with rituximab (anti-CD20), followed by quantifying B cell subsets over a 5 month period during and after treatment. Overall, all three types of circulating B lineage cells persist despite treatment with rituximab. The inability of rituximab to prolong survival in MM may result from this failure to deplete CD20+ B and plasma cells in MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 80-80
Author(s):  
Mohamed-Rachid Boulassel ◽  
Bader Yassine-Diab ◽  
Don Healey ◽  
Charles Nicolette ◽  
Rafick-Pierre Sékaly ◽  
...  

Abstract We demonstrated the enhancement of CD8-specific responses following the administration of an immune-based therapy consisting of dendritic cells (DC) electroporated with autologous amplified HIV-1 RNA and CD40 ligand (CD40 L) RNA manufactured by the Arcelis™ process in HIV patients receiving antiretroviral therapy (ART). We conducted a sub study on circulating B cell populations to further assess changes induced by this autologous DC therapy as CD40L is a major B cell co-stimulatory factor. To this end, we assessed B cell subset changes in relation to the proliferative capacity of CD4+ and CD8+ T cells response to DC targets containing the 4 HIV-1 antigens (Gag, Vpr, Rev, Nef). The co-expression of CD19, CD38, IgD, CD10, CD23, CD27, CD5, and CD138 were analyzed by multi-parametric flow cytometry to assess circulating B cell subsets such as naïve resting B-cells (Bm1), activated naïve B cells (Bm2), GC founder cells (Bm2’), centroblasts and centrocytes (Bm3 and Bm4), early memory B cells (eBm5), memory B cells (Bm5), IgD memory cells, plasma cells, and B-1 cells. Changes in B cells subsets were analyzed before and after the four intradermal injections of this immunotherapeutic product containing 1.2 × 107 DC. Ten ART treated subjects with undetectable viral load (< 50 copies/ml), median CD4+ count of 440 cells/μl (range: 316–1102), and with a CD4+ nadir > 200 cells/μl were studied. Throughout the study, no significant changes in CD4+ cell count, CD4/CD8 ratio, and no viral blips were noticed. The percentage of total B cells, Bm1, Bm2, Bm2′, eBm5, IgD memory, plasma cells, and B-1 cell subsets did not significantly change. However, a decrease in the percentage of Bm3 and Bm4 cells was found (0.36 [0.06–0.86] versus 0.11 [0.04–0.36]; P=0.05). Conversely, an important increase in the Bm5 cell subset was evidenced (10.4 [1.6–24.2] versus 18.1 [5.1–27.5]; P=0.005) suggesting a proliferation of B memory cells induced by DC immunization. In addition, the multifunctional and polyvalent CD8+ T cell proliferative responses to the 4 HIV genes used in this immunotherapy were noticed in 8 out of 9 subjects available for analysis and characterized by an effector memory phenotype. No CD4+ T cell immune responses were detected, consistent with the endogenous HLA class I loading of the antigens. Collectively, these results indicate that this immunotherapy induces an increase in the B memory cell population in the absence of inducing any clinically apparent autoimmunity along with strong HIV specific multifunctional CD8+ T cell specific immune responses.


Sign in / Sign up

Export Citation Format

Share Document