The roles of pyruvate, lactate and glucose during preimplantation development of embryos from F1 hybrid mice in vitro

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 99-105 ◽  
Author(s):  
J.J. Brown ◽  
D.G. Whittingham

Embryos of certain inbred mouse strains, and their F1 hybrids, are able to develop from the 1-cell to blastocyst stage in simple chemically defined media containing lactate (L), pyruvate (P) and glucose (G). The individual roles of these substrates in supporting complete preimplantation development in vitro was examined with 1-cell F2 embryos from B6CBF1 hybrid mice. Embryos collected between 26 and 27 h post hCG were cultured in medium containing L, P, LP or LPG. After 50 h in culture, the proportions developing to the morula stage were 1%, 83%, 94% and 100%, respectively. In combination, lactate and pyruvate appeared to act synergistically and both the rate and level of development to the morula stage were unaffected by the absence of glucose. After a further 46 h in culture, only the embryos grown in the presence of glucose developed into blastocysts. In LP medium, embryos arrested at the compacted morula stage late on day 3 of development. As culture continued in the absence of glucose, embryos decompacted (approximately 82 h post hCG) and subsequently degenerated. Exposure to medium containing glucose for the first, second or third 24 h period in culture was sufficient to support the morula-to-blastocyst transition. Glucose still supported this transition when embryos were transferred to LPG medium 3 h after the completion of compaction (76 h post hCG), but was ineffective 6 h later (82 h post hCG) once decompaction had commenced. We conclude that lactate and pyruvate together are able to support normal development of 1-cell F2 embryos to the morula stage in vitro, but that glucose is an essential component of the culture medium for development to the blastocyst stage.

1978 ◽  
Vol 148 (2) ◽  
pp. 341-350 ◽  
Author(s):  
P Billings ◽  
S J Burakoff ◽  
M E Dorf ◽  
B Benacerraf

The ability of cytotoxic T lymphocytes (CTL) induced in vitro to trinitrophenyl (TNP)-modified syngeneic cells to cross-reactively lyse a TNP allogeneic spleen target varies among inbred mouse strains. The cross-reactive CTL phenotype was found to be histocompatibility 2 (H-2) linked and to be dominant in F1 hybrid mice. All strains investigated demonstrated cross-reactivity except for some strains bearing portions of the H-2k haplotype. The gene(s) controlling this response maps to the K and/or I-A region of the H-2 complex. We have termed the immune response (Ir) gene responsible for controlling the specificity of CTL induced to TNP-modified syngeneic cells Ir-X-TNP.


2018 ◽  
Author(s):  
Daniel Oreperk ◽  
Sarah A Schoenrock ◽  
Rachel McMullan ◽  
Robin Ervin ◽  
Joseph Farrington ◽  
...  

ABSTRACTParent-of-origin effects (POEs) in mammals typically arise from maternal effects or from imprinting. Mutations in imprinted genes have been associated with psychiatric disorders, as well as with changes in a handful of animal behaviors. Nonetheless, POEs on complex traits such as behavior remain largely uncharacterized. Furthermore, although perinatal environmental exposures, such as nutrient deficiency, are known to modify both behavior and epigenetic effects generally, the architecture of environment-by-POE is almost completely unexplored. To study POE and environment-by-POE, we employ a relatively neglected but maximally powerful POE-detection system: a reciprocal F1 hybrid population. We exposed female NOD/ShiLtJxC57Bl/6J and C57Bl/6JxNOD/ShiLtJ mice, in utero, to one of four different diets, then after weaning recorded their whole-brain gene expression, as well as a set of behaviors that model psychiatric disease. Microarray expression data revealed an imprinting-enriched set of over a dozen genes subject to POE; the POE on the most significantly affected gene, Carmil1 (a.k.a. Lrrc16a), was validated using qPCR in the same and in a new set of mice. Several behaviors, especially locomotor behaviors, also showed POE. Interestingly, Bayesian mediation analysis suggests Carmil1 expression suppresses behavioral POE, and Airn suppresses POE on Carmil1 expression. A significant diet-by-POE was observed on one behavior, one imprinted gene, and over a dozen non-imprinted genes. Beyond our particular results, our study demonstrates a reciprocal F1 hybrid framework for studying POE and environment-by-POE on behavior.


1976 ◽  
Vol 144 (1) ◽  
pp. 298-303 ◽  
Author(s):  
D Gibson

Light chains isolated from normal immunoglobulin of unimmunized mice were analyzed by gel isoelectric focusing. Examination of the focusing patterns of light chains from nine inbred mouse strains showed that six of the strains (SWR/J, C3H/HeJ, DBA/1J, A/J, CBA/J, and C57BL/6J) possessed a virtually identical spectrum of focusing bands, while the remaining three strains (RF/J, AKR/J, and C58/J) showed clear differences involving several bands. Analysis of the light chains of individual SWR/J, C58/J, and F1 hybrid mice indicated that the differences in focusing pattern were inherited in a simple codominant fashion. A new procedure was developed for the rapid analysis of light chains from small quantities of serum.


1996 ◽  
Vol 8 (6) ◽  
pp. 975 ◽  
Author(s):  
O Suzuki ◽  
T Asano ◽  
Y Yamamoto ◽  
K Takano ◽  
M Koura

Mouse pronuclear embryos were obtained by in vitro fertilization with oocytes of 55 strains of immature females by gonadotrophin-induced ovulation and epididymal sperm of Slc:ICR strain. The number of oocytes ovulated with hormones (5.3-49.4 oocytes per head; average, 22.6), rates of in vitro fertilization (12.2-95.3%; average, 70.7%) and subsequent preimplantation development in Whitten's medium (WM) varied greatly among strains. F1 hybrids developed significantly better than other strains of mice and outbred animals did not develop as well as inbred animals. Within inbred mice, coat colour had no significant effect. In addition, the observation of preimplantation development in WM supplemented with ethylenediamine tetraacetic acid (EDTA) showed that the beneficial effect of the chelator was not universal to mouse embryos; EDTA had a good effect on ICR and PW/aSlc embryos but not on AKR or ddY embryos. The results indicate that strain differences should be considered when interpreting reproductive experiments using mouse embryos.


Genetics ◽  
1996 ◽  
Vol 142 (4) ◽  
pp. 1299-1304
Author(s):  
F Pardo-Manuel de Villena ◽  
C Slamka ◽  
M Fonseca ◽  
A K Naumova ◽  
J Paquette ◽  
...  

Abstract We determined the genotypes of >200 offspring that are survivors of matings between female reciprocal F1 hybrids (between the DDK and C57BL/6J inbred mouse strains) and C57BL/6J males at markers linked to the Ovum mutant (Om) locus on chromosome 11. In contrast to the expectations of our previous genetic model to explain the “DDK syndrome,” the genotypes of these offspring do not reflect preferential survival of individuals that receive C57BL/6J alleles from the F1 females in the region of chromosome 11 to which the Om locus has been mapped. In fact, we observe significant transmission-ratio distortion in favor of DDK alleles in this region. These results are also in contrast to the expectations of Wakasugi's genetic model for the inheritance of Om, in which he proposed equal transmission of DDK and non-DDK alleles from F1 females. We propose that the results of these experiments may be explained by reduced expression of the maternal DDK Om allele or expression of the maternal DDK Om allele in only a portion of the ova of F1 females


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1408
Author(s):  
Qiao Li ◽  
Zhihua Liu ◽  
Yi Liu ◽  
Chen Liang ◽  
Jiayi Shu ◽  
...  

TFPR1 is a novel adjuvant for protein and peptide antigens, which has been demonstrated in BALB/c mice in our previous studies; however, its adjuvanticity in mice with different genetic backgrounds remains unknown, and its adjuvanticity needs to be improved to fit the requirements for various vaccines. In this study, we first compared the adjuvanticity of TFPR1 in two commonly used inbred mouse strains, BALB/c and C57BL/6 mice, in vitro and in vivo, and demonstrated that TFPR1 activated TLR2 to exert its immune activity in vivo. Next, to prove the feasibility of TFPR1 acting as a major component of combined adjuvants, we prepared a combined adjuvant, TF–Al, by formulating TFPR1 and alum at a certain ratio and compared its adjuvanticity with that of TFPR1 and alum alone using OVA and recombinant HBsAg as model antigens in both BALB/c and C57BL/6 mice. Results showed that TFPR1 acts as an effective vaccine adjuvant in both BALB/c mice and C57BL/6 mice, and further demonstrated the role of TLR2 in the adjuvanticity of TFPR1 in vivo. In addition, we obtained a novel combined adjuvant, TF–Al, based on TFPR1, which can augment antibody and cellular immune responses in mice with different genetic backgrounds, suggesting its promise for vaccine development in the future.


Blood ◽  
1964 ◽  
Vol 24 (6) ◽  
pp. 770-774 ◽  
Author(s):  
LUCIANO FIORE-DONATI ◽  
LUIGI CHIECO-BIANCHI ◽  
GIUSEPPE DE BENEDICTIS ◽  
GIUSEPPE TRIDENTE

Abstract Dissociated thymus cells are capable of initiating graft-versus-host reaction in (C3Hf/Gs x DBA/2)F1 hybrids only when derived from parental donors previously sensitized against the antigens of the other parental strain. The lower immunologic activity of thymus cells as compared with other lymphoid cells is presumably due to quantitative rather than qualitative differences in immunologically competent cells.


2005 ◽  
Vol 17 (2) ◽  
pp. 216
Author(s):  
P. Booth ◽  
T. Watson ◽  
H. Leese

Pre-implantation embryos can produce and consume amino acids in a manner dependent upon stage of embryonic development (Partridge and Leese 1996 Reprod. Fert. Dev. 8, 945) that may also be predictive of subsequent viability (Houghton et al. 2002 Hum. Reprod. 17, 999). To examine these relationships in the pig, the appearance or depletion of 18 amino acids from a presumptive near-physiological mixture was determined by HPLC in porcine in vitro-produced embryos from the zygote to the blastocyst stage. Cumulus oocyte complexes derived from slaughterhouse prepubertal pig ovaries were matured for 40 h in modified TCM-199 before being fertilized (Day 0) with frozen thawed semen in tris-based medium. After 6 h, presumptive zygotes were denuded and cultured in groups of 20 in NCSU medium modified to contain a physiological mixture of 18 amino acids including 0.1 mM glutamine (NCSUaa). Groups of 2–10 embryos (dependent on stage) were removed on Day 0 (1 cell), Day 1 (2- and 4-cell), Day 4 (compact morula), and Day 6 (blastocyst) and placed in 4 μL NCSUaa for 24 h. After incubation, the embryos were removed and the medium analyzed by HPLC. Each stage was replicated 3–9 times. Since amino acid profiles of 2- and 4-cell embryos were not different, data were combined. Overall, arginine (1.19 ± 0.33), glutamine (0.78 ± 0.34) and threonine (0.05 ± 0.04) were significantly (P < 0.01) depleted from the medium whereas alanine (0.21 ± 0.1), glycine (0.20 ± 0.06), asparagine (0.13 ± 0.5), lysine (0.1 ± 0.03), isoleucine (0.08 ± 0.01), valine (0.05 ± 0.01), leucine (0.04 ± 0.02), phenylalanine (0.03 ± 0.01), and histidine (0.02 ± 0.04) significantly (P < 0.05) accumulated (mean of the 4 sampling timepoints; all values pmol/embryo/h ± SEM). The difference between amino acid accumulation and depletion (balance) was approximately equivalent between Day 0 and the morula stage although turnover (sum of depletion and accumulation) steadily decreased during this period from 3.1 on Day 0 to 1.35 pmol/embryo/h at the morula stage. However, at the blastocyst stage, turnover and balance increased to 6.32 and 2.42 pmol/embryo/h, respectively, i.e. net appearance occurred. Notable changes in amino acid profile during development included decreases in accumulation of asparagine, glutamate, and glycine in the medium and the depletion of glutamine over Days 0, 1, and 4, followed by reversal of these trends by Day 6. These data suggest that pig embryos can alter the accumulation and depletion rates of amino acids in a manner that is dependent on the specific amino acid and the stage of embryonic development. This work was supported by BBSRC.


2019 ◽  
Vol 31 (1) ◽  
pp. 134
Author(s):  
D. Veraguas ◽  
C. Aguilera ◽  
D. Echeverry ◽  
D. Saez-Ruiz ◽  
F. O. Castro ◽  
...  

The kodkod is considered a vulnerable species by the International Union for Conservation of Nature. Phylogenetically, the kodkod is classified in the Leopardus genus, which has only 36 chromosome pairs compared with the domestic cat, which has 38. The proposed hypothesis was that domestic cat oocytes are capable of reprogramming somatic cells from kodkod after interspecies somatic cell NT (SCNT), allowing the in vitro embryo development up to blastocyst stage. Five experimental groups were made based on the technology and culture system: (1) cat embryos generated by IVF (IVF), (2) cat embryos generated by SCNT (Ca1x), (3) aggregated cat embryos generated by SCNT (Ca2x), (4) kodkod embryos generated by interspecies SCNT (K1x), and (5) aggregated kodkod embryos generated by interspecies SCNT (K2x). Interspecies SCNT was performed using a zona-free method. Reconstructed embryos were activated by 2 electrical pulses of 140 kV cm−1 for 40 µs and then incubated for 5h in 10μg mL−1 of cycloheximide and 5μg mL−1 of cytochalasin B. Embryos were cultured in SOF media using the well of the well system in a 5% O2, 5% CO2, and 90% N2 atmosphere at 38.5°C for 8 days. The morulae and blastocysts rates were estimated, and diameter of cloned blastocysts was measured. The relative expression of OCT4, SOX2, and NANOG was evaluated in blastocysts by RT-qPCR using the standard curve method; SDHA was used for normalization. The Kruskal-Wallis test was used to evaluate the developmental parameters and gene expression. The t-test was used to evaluate blastocyst diameter. Statistical differences were considered at P&lt;0.05. The number of replicates was IVF=10, Ca1x=8, Ca2x=6, K1x=3, and K2x=8. The morulae rate was lower when clone embryos were cultured individually (IVF=97/153, 63.4%; Ca2x=28/51, 54.9%; K2x=63/110, 57.3%; Ca1x=48/126, 38.1%; K1x=22/87, 25.3%; P&lt;0.05). In the domestic cat, blastocysts rate was higher in IVF (58/153, 37.9%) and Ca2x (28/51, 29.4%) groups than in the Ca1x group (21/126, 16.7%; P&lt;0.05). No blastocysts were generated in the K1x group (0/87), whereas 5.5% of blastocysts were obtained from the K2x (6/110; 5.5%); this was not statistically different compared with the K1x group (P&gt;0.05). No differences were found in blastocyst diameter between the Ca1x (220.4µm) and Ca2x (251.2µm) groups (P&gt;0.05). However, the diameter of the blastocysts from the K2x group (172.8µm) tended to be lower than that of the blastocysts from the Ca2x group (P=0.05). Regarding gene expression, only 1 of the 6 kodkod blastocysts expressed OCT4, and none expressed SOX2 and NANOG. On the other hand, the relative expression of OCT4 tended to decrease in blastocysts from the Ca1x and Ca2x groups compared with the IVF group (P=0.09), but no differences were found in the expression of SOX2 and NANOG among groups (P&gt;0.05). In conclusion, after interspecies SCNT, domestic cat oocytes support the development of kodkod embryos until the morula stage. However, the embryo aggregation did not significantly improve the blastocyst rate and gene expression.


2018 ◽  
Vol 30 (1) ◽  
pp. 189
Author(s):  
L. Landeo ◽  
R. S. Molina ◽  
M. E. Zuñiga ◽  
T. R. Gastelu ◽  
C. Sotacuro ◽  
...  

The objective of this study was to evaluate the in vitro developmental competence of alpaca embryos bisected at different embryonic stages. Gametes were obtained from ovaries and testes collected from a local abattoir. Cumulus-oocyte complexes (COC) were recovered (n = 120) by aspiration of ovarian follicles using a 5-mL syringe with an 18-gauge needle. Then, COC with at least 3 layers of cumulus cells and a homogeneous cytoplasm were matured in TCM-199 supplemented with 10% FCS, FSH (0.02 IU [JM1] [P2] [P3]), and 0.01 mg mL−1 oestradiol 17β [JM4] for 26 h at 38.5°C and 5% CO2 in air. After in vitro maturation, COC were placed in a 30-mL Petri dish containing FERT-TALP solution for 30 min. Then, epididymal alpaca spermatozoa (3 × 106 mL−1) were added to the dish and co-incubated with the COC for 20 h at 38.5°C and 5% CO2 in air. Motile epididymal sperm were selected by swim-up method centrifuged for 15 min at 350 × g in 2 mL of SPERM-TALP supplemented with 6 mg mL−1 of fatty-acid-free BSA. Sperm pellet was extended and culture in 5% CO2 in air at 38.5°C for 45 min. Thirty-three viable embryos at different stages [2-cells (n = 6), 8-cells (n = 15), and morulae (n = 12)] were bisected into approximately equal halves using a micro-surgical blade. The embryos were previously treated with 2 mg mL−1 of protease from Streptomyces griseus (P 8811, Sigma, St. Louis, MO, USA) for 2 min to remove the zona pellucida. After bisection, the demi-embryos were cultivated in in vitro culture (IVC) medium containing 0.036 mg mL−1 sodium pyruvate, 0.146 mg mL−1 l-glutamine, 1% essential amino acids, 0.5% nonessential amino acids, and supplemented with 10% FCS using the well-of-the-well system. The demi-embryos were incubated for 7 days (changing the media every 48 h) in 5% CO2 in air at 38.5°C. Additional embryos (n = 60) were obtained using the same conditions described above and used as a control group (unmanipulated). We obtained 66 demi-embryos [2-cells (n = 12), 8-cells (n = 30), and morulae (n = 24)] after bisection that were considered for IVC. From 12 demi-embryos bisected at 2-cell and 30 bisected at 8-cell stages, 3 (25%) and 30 (100%) reached the morula stage respectively. However, they did not develop any further. Interestingly, 18 demi-embryos bisected in morula reached the blastocyst stage (80%). For unmanipulated embryos, we obtained 42% (25/60), 35% (21/60), 32% (19/60), and 28% (17/60) of cleavage, morulae, and blastocyst and hatched blastocyst rates, respectively. In conclusion, alpaca embryos bisected at earlier stages (less than 8-cell) are not suitable to produce blastocysts. The earliest stage to produce blastocyst from bisected alpaca embryos is the morula stage.


Sign in / Sign up

Export Citation Format

Share Document