Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture

Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 439-449 ◽  
Author(s):  
R.S. Talhouk ◽  
J.R. Chin ◽  
E.N. Unemori ◽  
Z. Werb ◽  
M.J. Bissell

The extracellular matrix (ECM) is an important regulator of mammary epithelial cell function both in vivo and in culture. Substantial remodeling of ECM accompanies the structural changes in the mammary gland during gestation, lactation and involution. However, little is known about the nature of the enzymes and the processes involved. We have characterized and studied the regulation of cell-associated and secreted mammary gland proteinases active at neutral pH that may be involved in degradation of the ECM during the different stages of mammary development. Mammary tissue extracts from virgin and pregnant CD-1 mice resolved by zymography contained three major proteinases of 60K (K = 10(3) Mr), 68K and 70K that degraded denatured collagen. These three gelatinases were completely inhibited by the tissue inhibitor of metalloproteinases. Proteolytic activity was lowest during lactation especially for the 60K gelatinase which was shown to be the activated form of the 68K gelatinase. The activated 60K form decreased prior to parturition but increased markedly after the first two days of involution. An additional gelatin-degrading proteinase of 130K was expressed during the first three days of involution and differed from the other gelatinases by its lack of inhibition by the tissue inhibitor of metalloproteinases. The activity of the casein-degrading proteinases was lowest during lactation. Three caseinolytic activities were detected in mammary tissue extracts. A novel 26K cell-associated caseinase—a serine arginine-esterase—was modulated at different stages of mammary development. The other caseinases, at 92K and a larger than 100K, were not developmentally regulated. To find out which cell type produced the proteinases in the mammary gland, we isolated and cultured mouse mammary epithelial cells. Cells cultured on different substrata produced the full spectrum of gelatinases and caseinases seen in the whole gland thus implicating the epithelial cells as a major source of these enzymes. Analysis of proteinases secreted by cells grown on a reconstituted basement membrane showed that gelatinases were secreted preferentially in the direction of the basement membrane. The temporal pattern of expression of these proteinases and the basal secretion of gelatinases by epithelial cells suggest their involvement in the remodelling of the extracellular matrix during the different stages of mammary development and thus modulation of mammary cell function.

1999 ◽  
Vol 112 (11) ◽  
pp. 1771-1783 ◽  
Author(s):  
A.D. Metcalfe ◽  
A. Gilmore ◽  
T. Klinowska ◽  
J. Oliver ◽  
A.J. Valentijn ◽  
...  

Epithelial cells within the mammary gland undergo developmental programmes of proliferation and apoptosis during the pregnancy cycle. After weaning, secretory epithelial cells are removed by apoptosis. To determine whether members of the Bcl-2 gene family could be involved in regulating this process, we have examined whether changes in their expression occur during this developmental apoptotic program in vivo. Bax and Bcl-x were evenly expressed throughout development. However, expression of Bak and Bad was increased during late pregnancy and lactation, and the proteins were present during the time of maximal apoptotic involution. Thereafter, their levels declined. In contrast, Bcl-w was expressed in pregnancy and lactation but was downregulated at the onset of apoptosis. Bcl-2 was not detected in lactating or early involuting mammary gland. Thus, the pro-apoptotic proteins Bax, Bak and Bad, as well as the death-suppressors Bcl-x, Bcl-2 and Bcl-w, are synthesised in mouse mammary gland, and dynamic changes in the expression profiles of these proteins occurs during development. To determine if changes in Bak and Bcl-w expression could regulate mammary apoptosis, their effect on cultured mouse mammary epithelial cells was examined in transient transfection assays. Enforced expression of Bak induced rapid mammary apoptosis, which could be suppressed by coexpression of Bcl-w. In extracts of mammary tissue in vivo, Bak heterodimerized with Bcl-x whereas Bax associated with Bcl-w, but Bak/Bcl-w heterodimers were not detected. Thus, Bak and Bcl-w may regulate cell death through independent pathways. These results support a model in which mammary epithelial cells are primed for apoptosis during the transition from pregnancy to lactation by de novo expression of the death effectors Bak and Bad. It is suggested that these proteins are prevented from triggering apoptosis by anti-apoptotic Bcl-2 family proteins until involution, when the levels of Bcl-w decline. Our study provides evidence that regulated changes in the expression of cell death genes may contribute to the developmental control of mammary apoptosis.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 797 ◽  
Author(s):  
Xin Zhang ◽  
Yifan Wang ◽  
Mengzhi Wang ◽  
Gang Zhou ◽  
Lianmin Chen ◽  
...  

Arginine, a semi-essential functional amino acid, has been found to promote the synthesis of casein in mammary epithelial cells to some extent. Data from mouse indicated that microRNA (miRNA) are important in regulating the development of mammary gland and milk protein synthesis. Whether there are potential links among arginine, miRNA and casein synthesis in bovine mammary gland is uncertain. The objective of the present work was to detect the effects of arginine supplementation on the expression of miRNA associated with casein synthesis in mammary tissue and mammary epithelial cells (BMEC). The first study with bovine mammary epithelial cells (BMEC) focused on screening for miRNA candidates associated with the regulation of casein production by arginine. The BMEC were cultured with three different media, containing 0, 1.6 and 3.2 mM arginine, for 24 h. The expression of candidate miRNA was evaluated. Subsequently, in an in vivo study, 6 Chinese Holstein dairy cows with similar BW (mean ± SE) (512.0 ± 19.6 kg), parity (3), BCS (4.0) and DIM (190 ± 10.3 d) were randomly assigned to three experimental groups. The experimental cows received an infusion of casein, arginine (casein plus double the concentration of arginine in casein), and alanine (casein plus alanine, i.e., iso-nitrogenous to the arginine group) in a replicated 3 × 3 Latin square design with 22 d for each period (7 d for infusion and 15 d for washout). Mammary gland biopsies were obtained from each cow at the end of each infusion period. Results of the in vitro study showed differences between experimental groups and the control group for the expression of nine miRNA: miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, miR-712, miR-574-5p, miR-468 and miR-875-3p. The in vivo study showed that arginine infusion promoted milk protein content, casein yield and the expression of CSN1S1 and CSN1S2. Furthermore, the expression of miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, and miR-712 was also greater in response to arginine injection compared with the control or alanine group. Overall, results both in vivo and in vitro revealed that arginine might partly influence casein yield by altering the expression of 6 miRNAs (miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, and miR-712).


2005 ◽  
Vol 45 (8) ◽  
pp. 757 ◽  
Author(s):  
C. Gray ◽  
Y. Strandberg ◽  
L. Donaldson ◽  
R. L. Tellam

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.


2014 ◽  
Vol 307 (8) ◽  
pp. E674-E685 ◽  
Author(s):  
Abby L. Johnson ◽  
Glendon M. Zinser ◽  
Susan E. Waltz

Vitamin D3 receptor (VDR) signaling within the mammary gland regulates various postnatal stages of glandular development, including puberty, pregnancy, involution, and tumorigenesis. Previous studies have shown that vitamin D3 treatment induces cell-autonomous growth inhibition and differentiation of mammary epithelial cells in culture. Furthermore, mammary adipose tissue serves as a depot for vitamin D3 storage, and both epithelial cells and adipocytes are capable of bioactivating vitamin D3. Despite the pervasiveness of VDR in mammary tissue, individual contributions of epithelial cells and adipocytes, as well as the VDR-regulated cross-talk between these two cell types during pubertal mammary development, have yet to be investigated. To assess the cell-type specific effect of VDR signaling during pubertal mammary development, novel mouse models with mammary epithelial- or adipocyte-specific loss of VDR were generated. Interestingly, loss of VDR in either cellular compartment accelerated ductal morphogenesis with increased epithelial cell proliferation and decreased apoptosis within terminal end buds. Conversely, VDR signaling specifically in the mammary epithelium modulated hormone-induced alveolar growth, as ablation of VDR in this cell type resulted in precocious alveolar development. In examining cellular cross-talk ex vivo, we show that ligand-dependent VDR signaling in adipocytes significantly inhibits mammary epithelial cell growth in part through the vitamin D3-dependent production of the cytokine IL-6. Collectively, these studies delineate independent roles for vitamin D3-dependent VDR signaling in mammary adipocytes and epithelial cells in controlling pubertal mammary gland development.


2010 ◽  
Vol 17 (11) ◽  
pp. 1797-1809 ◽  
Author(s):  
Salim Bougarn ◽  
Patricia Cunha ◽  
Abdallah Harmache ◽  
Angélina Fromageau ◽  
Florence B. Gilbert ◽  
...  

ABSTRACT Staphylococcus aureus, a major pathogen for the mammary gland of dairy ruminants, elicits the recruitment of neutrophils into milk during mastitis, but the mechanisms are incompletely understood. We investigated the response of the bovine mammary gland to muramyl dipeptide (MDP), an elementary constituent of the bacterial peptidoglycan, alone or in combination with lipoteichoic acid (LTA), another staphylococcal microbial-associated molecular pattern (MAMP). MDP induced a prompt and marked influx of neutrophils in milk, and its combination with LTA elicited a more intense and prolonged influx than the responses to either stimulus alone. The concentrations of several chemoattractants for neutrophils (CXCL1, CXCL2, CXCL3, CXCL8, and C5a) increased in milk after challenge, and the highest increases followed challenge with the combination of MDP and LTA. MDP and LTA were also synergistic in inducing in vitro chemokine production by bovine mammary epithelial cells (bMEpC). Nucleotide-binding oligomerization domain 2 (NOD2), a major sensor of MDP, was expressed (mRNA) in bovine mammary tissue and by bMEpC in culture. The production of interleukin-8 (IL-8) following the stimulation of bMEpC by LTA and MDP was dependent on the activation of NF-κB. LTA-induced IL-8 production did not depend on platelet-activating factor receptor (PAFR), as the PAFR antagonist WEB2086 was without effect. In contrast, bMEpC and mammary tissue are known to express Toll-like receptor 2 (TLR2) and to respond to TLR2 agonists. Although the levels of expression of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1β were increased by LTA and MDP at the mRNA level, no protein could be detected in the bMEpC culture supernatant. The level of induction of IL-6 was low at both the mRNA and protein levels. These results indicate that MDP and LTA exert synergistic effects to induce neutrophilic inflammation in the mammary gland. These results also show that bMEpC could contribute to the inflammatory response by recognizing LTA and MDP and secreting chemokines but not proinflammatory cytokines. Overall, this study indicates that the TLR2 and NOD2 pathways could cooperate to trigger an innate immune response to S. aureus mastitis.


Development ◽  
2002 ◽  
Vol 129 (17) ◽  
pp. 4159-4170 ◽  
Author(s):  
Gang Li ◽  
Gertraud W. Robinson ◽  
Ralf Lesche ◽  
Hilda Martinez-Diaz ◽  
Zhaorong Jiang ◽  
...  

PTEN tumor suppressor is frequently mutated in human cancers, including breast cancers. Female patients with inherited PTEN mutations suffer from virginal hypertrophy of the breast with high risk of malignant transformation. However, the exact mechanisms of PTEN in controlling mammary gland development and tumorigenesis are unclear. In this study, we generated mice with a mammary-specific deletion of the Pten gene. Mutant mammary tissue displayed precocious lobulo-alveolar development, excessive ductal branching, delayed involution and severely reduced apoptosis. Pten null mammary epithelial cells were disregulated and hyperproliferative. Mutant females developed mammary tumors early in life. Similar phenotypes were observed in Pten-null mammary epithelia that had been transplanted into wild-type stroma, suggesting that PTEN plays an essential and cell-autonomous role in controlling the proliferation, differentiation and apoptosis of mammary epithelial cells.


Development ◽  
2000 ◽  
Vol 127 (20) ◽  
pp. 4493-4509
Author(s):  
H.P. Gardner ◽  
G.K. Belka ◽  
G.B. Wertheim ◽  
J.L. Hartman ◽  
S.I. Ha ◽  
...  

The steroid hormones 17 beta-estradiol and progesterone play a central role in the pathogenesis of breast cancer and regulate key phases of mammary gland development. This suggests that developmental regulatory molecules whose activity is influenced by ovarian hormones may also contribute to mammary carcinogenesis. In a screen designed to identify protein kinases expressed in the mammary gland, we previously identified a novel SNF1-related serine/threonine kinase, Hunk (hormonally upregulated Neu-associated kinase). During postnatal mammary development, Hunk mRNA expression is restricted to a subset of mammary epithelial cells and is temporally regulated with highest levels of expression occurring during early pregnancy. In addition, treatment of mice with 17 beta-estradiol and progesterone results in the rapid and synergistic upregulation of Hunk expression in a subset of mammary epithelial cells, suggesting that the expression of this kinase may be regulated by ovarian hormones. Consistent with the tightly regulated pattern of Hunk expression during pregnancy, mammary glands from transgenic mice engineered to misexpress Hunk in the mammary epithelium manifest temporally distinct defects in epithelial proliferation and differentiation during pregnancy, and fail to undergo normal lobuloalveolar development. Together, these observations suggest that Hunk may contribute to changes in the mammary gland that occur during pregnancy in response to ovarian hormones.


2014 ◽  
Vol 307 (3) ◽  
pp. R237-R247 ◽  
Author(s):  
Yong Shao ◽  
Theresa L. Wellman ◽  
Karen M. Lounsbury ◽  
Feng-Qi Zhao

Glucose is a major substrate for milk synthesis and is taken up from the blood by mammary epithelial cells (MECs) through facilitative glucose transporters (GLUTs). The expression levels of GLUT1 and GLUT8 are upregulated dramatically in the mammary gland from late pregnancy through early lactation stages. This study aimed to test the hypothesis that this increase in GLUT1 and GLUT8 expression involves hypoxia signaling through hypoxia inducible factor-1α (HIF-1α) in MECs. Mouse mammary glands showed significantly more hypoxia in midpregnancy through early lactation stages compared with in the virgin stage, as stained by the hypoxia marker pimonidazole HCl. Treatment with hypoxia (2% O2) significantly stimulated glucose uptake and GLUT1 mRNA and protein expression, but decreased GLUT8 mRNA expression in bovine MECs. In MECs, hypoxia also increased the levels of HIF-1α protein in the nuclei, and siRNA against HIF-1α completely abolished the hypoxia-induced upregulation of GLUT1, while having no effect on GLUT8 expression. A 5′-RCGTG-3′ core HIF-1α binding sequence was identified 3.7 kb upstream of the bovine GLUT1 gene, and HIF-1α binding to this site was increased during hypoxia. In conclusion, the mammary glands in pregnant and lactating animals are hypoxic, and MECs respond to this hypoxia by increasing GLUT1 expression and glucose uptake through a HIF-1α-dependent mechanism. GLUT8 expression, however, is negatively regulated by hypoxia through a HIF-1α-independent pathway. The regulation of glucose transporters through hypoxia-mediated gene transcription in the mammary gland may provide an important physiological mechanism for MECs to meet the metabolic demands of mammary development and lactation.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1302 ◽  
Author(s):  
Jimenez-Rojo ◽  
Pagella ◽  
Harada ◽  
Mitsiadis

The continuous growth of rodent incisors is ensured by clusters of mesenchymal and epithelial stem cells that are located at the posterior part of these teeth. Genetic lineage tracing studies have shown that dental epithelial stem cells (DESCs) are able to generate all epithelial cell populations within incisors during homeostasis. However, it remains unclear whether these cells have the ability to adopt alternative fates in response to extrinsic factors. Here, we have studied the plasticity of DESCs in the context of mammary gland regeneration. Transplantation of DESCs together with mammary epithelial cells into the mammary stroma resulted in the formation of chimeric ductal epithelial structures in which DESCs adopted all the possible mammary fates including milk-producing alveolar cells. In addition, when transplanted without mammary epithelial cells, DESCs developed branching rudiments and cysts. These in vivo findings demonstrate that when outside their niche, DESCs redirect their fates according to their new microenvironment and thus can contribute to the regeneration of non-dental tissues.


1996 ◽  
Vol 135 (6) ◽  
pp. 1669-1677 ◽  
Author(s):  
C M Alexander ◽  
E W Howard ◽  
M J Bissell ◽  
Z Werb

We have used transgenic mice overexpressing the human tissue inhibitor of metalloproteinases (TIMP)-1 gene under the control of the ubiquitous beta-actin promoter/enhancer to evaluate matrix metalloproteinase (MMP) function in vivo in mammary gland growth and development. By crossing the TIMP-1 transgenic animals with mice expressing an autoactivating stromelysin-1 transgene targeted to mammary epithelial cells, we obtained a range of mice with genetically engineered proteolytic levels. The alveolar epithelial cells of mice expressing autoactivating stromelysin-1 underwent unscheduled apoptosis during late pregnancy. When stromelysin-1 transgenic mice were crossed with mice overexpressing TIMP-1, apoptosis was extinguished. Entactin (nidogen) was a specific target for stromelysin-1 in the extracellular matrix. The enhanced cleavage of basement membrane entactin to above-normal levels was directly related to the apoptosis of overlying mammary epithelial cells and paralleled the extracellular MMP activity. These results provide direct evidence for cleavage of an extracellular matrix molecule by an MMP in vivo.


Sign in / Sign up

Export Citation Format

Share Document