Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland

Development ◽  
2002 ◽  
Vol 129 (17) ◽  
pp. 4159-4170 ◽  
Author(s):  
Gang Li ◽  
Gertraud W. Robinson ◽  
Ralf Lesche ◽  
Hilda Martinez-Diaz ◽  
Zhaorong Jiang ◽  
...  

PTEN tumor suppressor is frequently mutated in human cancers, including breast cancers. Female patients with inherited PTEN mutations suffer from virginal hypertrophy of the breast with high risk of malignant transformation. However, the exact mechanisms of PTEN in controlling mammary gland development and tumorigenesis are unclear. In this study, we generated mice with a mammary-specific deletion of the Pten gene. Mutant mammary tissue displayed precocious lobulo-alveolar development, excessive ductal branching, delayed involution and severely reduced apoptosis. Pten null mammary epithelial cells were disregulated and hyperproliferative. Mutant females developed mammary tumors early in life. Similar phenotypes were observed in Pten-null mammary epithelia that had been transplanted into wild-type stroma, suggesting that PTEN plays an essential and cell-autonomous role in controlling the proliferation, differentiation and apoptosis of mammary epithelial cells.

2005 ◽  
Vol 45 (8) ◽  
pp. 757 ◽  
Author(s):  
C. Gray ◽  
Y. Strandberg ◽  
L. Donaldson ◽  
R. L. Tellam

Innate immunity plays a vital role in the protection of the bovine mammary gland against mastitis. Until recently, the migration of effector cells such as neutrophils and monocytes into the mammary gland was thought to provide the only defence against invading pathogens. However, mammary epithelial cells may also play an important role in the immune response, contributing to the innate defence of the mammary tissue through secretion of antimicrobial peptides and attraction of circulating immune effector cells. This paper reviews the innate immune pathways in mammary epithelial cells and examines their role in the initiation of an innate immune response to Gram-positive and Gram-negative bacteria.


1999 ◽  
Vol 112 (11) ◽  
pp. 1771-1783 ◽  
Author(s):  
A.D. Metcalfe ◽  
A. Gilmore ◽  
T. Klinowska ◽  
J. Oliver ◽  
A.J. Valentijn ◽  
...  

Epithelial cells within the mammary gland undergo developmental programmes of proliferation and apoptosis during the pregnancy cycle. After weaning, secretory epithelial cells are removed by apoptosis. To determine whether members of the Bcl-2 gene family could be involved in regulating this process, we have examined whether changes in their expression occur during this developmental apoptotic program in vivo. Bax and Bcl-x were evenly expressed throughout development. However, expression of Bak and Bad was increased during late pregnancy and lactation, and the proteins were present during the time of maximal apoptotic involution. Thereafter, their levels declined. In contrast, Bcl-w was expressed in pregnancy and lactation but was downregulated at the onset of apoptosis. Bcl-2 was not detected in lactating or early involuting mammary gland. Thus, the pro-apoptotic proteins Bax, Bak and Bad, as well as the death-suppressors Bcl-x, Bcl-2 and Bcl-w, are synthesised in mouse mammary gland, and dynamic changes in the expression profiles of these proteins occurs during development. To determine if changes in Bak and Bcl-w expression could regulate mammary apoptosis, their effect on cultured mouse mammary epithelial cells was examined in transient transfection assays. Enforced expression of Bak induced rapid mammary apoptosis, which could be suppressed by coexpression of Bcl-w. In extracts of mammary tissue in vivo, Bak heterodimerized with Bcl-x whereas Bax associated with Bcl-w, but Bak/Bcl-w heterodimers were not detected. Thus, Bak and Bcl-w may regulate cell death through independent pathways. These results support a model in which mammary epithelial cells are primed for apoptosis during the transition from pregnancy to lactation by de novo expression of the death effectors Bak and Bad. It is suggested that these proteins are prevented from triggering apoptosis by anti-apoptotic Bcl-2 family proteins until involution, when the levels of Bcl-w decline. Our study provides evidence that regulated changes in the expression of cell death genes may contribute to the developmental control of mammary apoptosis.


2010 ◽  
Vol 17 (11) ◽  
pp. 1797-1809 ◽  
Author(s):  
Salim Bougarn ◽  
Patricia Cunha ◽  
Abdallah Harmache ◽  
Angélina Fromageau ◽  
Florence B. Gilbert ◽  
...  

ABSTRACT Staphylococcus aureus, a major pathogen for the mammary gland of dairy ruminants, elicits the recruitment of neutrophils into milk during mastitis, but the mechanisms are incompletely understood. We investigated the response of the bovine mammary gland to muramyl dipeptide (MDP), an elementary constituent of the bacterial peptidoglycan, alone or in combination with lipoteichoic acid (LTA), another staphylococcal microbial-associated molecular pattern (MAMP). MDP induced a prompt and marked influx of neutrophils in milk, and its combination with LTA elicited a more intense and prolonged influx than the responses to either stimulus alone. The concentrations of several chemoattractants for neutrophils (CXCL1, CXCL2, CXCL3, CXCL8, and C5a) increased in milk after challenge, and the highest increases followed challenge with the combination of MDP and LTA. MDP and LTA were also synergistic in inducing in vitro chemokine production by bovine mammary epithelial cells (bMEpC). Nucleotide-binding oligomerization domain 2 (NOD2), a major sensor of MDP, was expressed (mRNA) in bovine mammary tissue and by bMEpC in culture. The production of interleukin-8 (IL-8) following the stimulation of bMEpC by LTA and MDP was dependent on the activation of NF-κB. LTA-induced IL-8 production did not depend on platelet-activating factor receptor (PAFR), as the PAFR antagonist WEB2086 was without effect. In contrast, bMEpC and mammary tissue are known to express Toll-like receptor 2 (TLR2) and to respond to TLR2 agonists. Although the levels of expression of the inflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1β were increased by LTA and MDP at the mRNA level, no protein could be detected in the bMEpC culture supernatant. The level of induction of IL-6 was low at both the mRNA and protein levels. These results indicate that MDP and LTA exert synergistic effects to induce neutrophilic inflammation in the mammary gland. These results also show that bMEpC could contribute to the inflammatory response by recognizing LTA and MDP and secreting chemokines but not proinflammatory cytokines. Overall, this study indicates that the TLR2 and NOD2 pathways could cooperate to trigger an innate immune response to S. aureus mastitis.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 797 ◽  
Author(s):  
Xin Zhang ◽  
Yifan Wang ◽  
Mengzhi Wang ◽  
Gang Zhou ◽  
Lianmin Chen ◽  
...  

Arginine, a semi-essential functional amino acid, has been found to promote the synthesis of casein in mammary epithelial cells to some extent. Data from mouse indicated that microRNA (miRNA) are important in regulating the development of mammary gland and milk protein synthesis. Whether there are potential links among arginine, miRNA and casein synthesis in bovine mammary gland is uncertain. The objective of the present work was to detect the effects of arginine supplementation on the expression of miRNA associated with casein synthesis in mammary tissue and mammary epithelial cells (BMEC). The first study with bovine mammary epithelial cells (BMEC) focused on screening for miRNA candidates associated with the regulation of casein production by arginine. The BMEC were cultured with three different media, containing 0, 1.6 and 3.2 mM arginine, for 24 h. The expression of candidate miRNA was evaluated. Subsequently, in an in vivo study, 6 Chinese Holstein dairy cows with similar BW (mean ± SE) (512.0 ± 19.6 kg), parity (3), BCS (4.0) and DIM (190 ± 10.3 d) were randomly assigned to three experimental groups. The experimental cows received an infusion of casein, arginine (casein plus double the concentration of arginine in casein), and alanine (casein plus alanine, i.e., iso-nitrogenous to the arginine group) in a replicated 3 × 3 Latin square design with 22 d for each period (7 d for infusion and 15 d for washout). Mammary gland biopsies were obtained from each cow at the end of each infusion period. Results of the in vitro study showed differences between experimental groups and the control group for the expression of nine miRNA: miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, miR-712, miR-574-5p, miR-468 and miR-875-3p. The in vivo study showed that arginine infusion promoted milk protein content, casein yield and the expression of CSN1S1 and CSN1S2. Furthermore, the expression of miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, and miR-712 was also greater in response to arginine injection compared with the control or alanine group. Overall, results both in vivo and in vitro revealed that arginine might partly influence casein yield by altering the expression of 6 miRNAs (miR-743a, miR-543, miR-101a, miR-760-3p, miR-1954, and miR-712).


2000 ◽  
Vol 20 (23) ◽  
pp. 9092-9101 ◽  
Author(s):  
Ratna K. Vadlamudi ◽  
Rui-An Wang ◽  
Amjad H. Talukder ◽  
Liana Adam ◽  
Randy Johnson ◽  
...  

ABSTRACT Heregulin β1 (HRG), a combinatorial ligand for human growth factor receptors 3 and 4, is a regulatory polypeptide that promotes the differentiation of mammary epithelial cells into secretory lobuloalveoli. Emerging evidence suggests that the processes of secretory pathways, such as biogenesis and trafficking of vesicles in neurons and adipose cells, are regulated by the Rab family of low-molecular-weight GTPases. In this study, we identified Rab3A as a gene product induced by HRG. Full-length Rab3A was cloned from a mammary gland cDNA library. We demonstrated that HRG stimulation of human breast cancer cells and normal breast epithelial cells induces the expression of Rab3A protein and mRNA in a cycloheximide-independent manner. HRG-mediated induction of Rab3A expression was blocked by an inhibitor of phosphatidylinositol 3-kinase but not by inhibitors of mitogen-activated protein kinases p38MAPK and p42/44MAPK. Human breast epithelial cells also express other components of regulated vesicular traffic, such as rabphilin 3A, Doc2, and syntaxin. Rab3A was predominantly localized in the cytosol, and HRG stimulation of the epithelial cells also raised the level of membrane-bound Rab3A. HRG treatment induced a profound alteration in the cell morphology in which cells displayed neuron-like membrane extensions that contained Rab3A-coated, vesicle-like structures. In addition, HRG also promoted the secretion of cellular proteins from the mammary epithelial cells. The ability of HRG to modify exocytosis was verified by using a growth hormone transient-transfection system. Analysis of mouse mammary gland development revealed the expression of Rab3A in mammary epithelial cells. Furthermore, expression of the HRG transgene in Harderian tumors in mice also enhanced the expression of Rab3A. These observations provide new evidence of the existence of a Rab3A pathway in mammary epithelial cells and suggest that it may play a role in vesicle trafficking and secretion of proteins from epithelial cells in response to stimulation by the HRG expressed within the mammary mesenchyma.


2021 ◽  
pp. 105367
Author(s):  
Peerzada Tajamul Mumtaz ◽  
Qamar Taban ◽  
Basharat Bhat ◽  
Syed Mudasir Ahmad ◽  
Mashooq Ahmad Dar ◽  
...  

2021 ◽  
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jon Hickford ◽  
Huitong Zhou ◽  
...  

In our previous studies, microRNA-432 (miR-432) was found to be one of differentially expressed miRNAs in ovine mammary gland between the two breeds of lactating sheep with different milk production...


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3194
Author(s):  
Yutaka Suzuki ◽  
Sachi Chiba ◽  
Koki Nishihara ◽  
Keiichi Nakajima ◽  
Akihiko Hagino ◽  
...  

Epithelial barrier function in the mammary gland acts as a forefront of the defense mechanism against mastitis, which is widespread and a major disorder in dairy production. Chemerin is a chemoattractant protein with potent antimicrobial ability, but its role in the mammary gland remains unelucidated. The aim of this study was to determine the function of chemerin in mammary epithelial tissue of dairy cows in lactation or dry-off periods. Mammary epithelial cells produced chemerin protein, and secreted chemerin was detected in milk samples. Chemerin treatment promoted the proliferation of cultured bovine mammary epithelial cells and protected the integrity of the epithelial cell layer from hydrogen peroxide (H2O2)-induced damage. Meanwhile, chemerin levels were higher in mammary tissue with mastitis. Tumor necrosis factor alpha (TNF-α) strongly upregulated the expression of the chemerin-coding gene (RARRES2) in mammary epithelial cells. Therefore, chemerin was suggested to support mammary epithelial cell growth and epithelial barrier function and to be regulated by inflammatory stimuli. Our results may indicate chemerin as a novel therapeutic target for diseases in the bovine mammary gland.


2004 ◽  
Vol 15 (5) ◽  
pp. 2302-2311 ◽  
Author(s):  
Yijun Yi ◽  
Anne Shepard ◽  
Frances Kittrell ◽  
Biserka Mulac-Jericevic ◽  
Daniel Medina ◽  
...  

This study demonstrated, for the first time, the following events related to p19ARFinvolvement in mammary gland development: 1) Progesterone appears to regulate p19ARFin normal mammary gland during pregnancy. 2) p19ARFexpression levels increased sixfold during pregnancy, and the protein level plateaus during lactation. 3) During involution, p19ARFprotein level remained at high levels at 2 and 8 days of involution and then, declined sharply at day 15. Absence of p19ARFin mammary epithelial cells leads to two major changes, 1) a delay in the early phase of involution concomitant with downregulation of p21Cip1and decrease in apoptosis, and 2) p19ARFnull cells are immortal in vivo measured by serial transplantion, which is partly attributed to complete absence of p21Cip1compared with WT cells. Although, p19ARFis dispensable in mammary alveologenesis, as evidenced by normal differentiation in the mammary gland of pregnant p19ARFnull mice, the upregulation of p19ARFby progesterone in the WT cells and the weakness of p21Cip1in mammary epithelial cells lacking p19ARFstrongly suggest that the functional role(s) of p19ARFin mammary gland development is critical to sustain normal cell proliferation rate during pregnancy and normal apoptosis in involution possibly through the p53-dependent pathway.


Sign in / Sign up

Export Citation Format

Share Document