scholarly journals Connexin trafficking and the control of gap junction assembly in mouse preimplantation embryos

Development ◽  
1993 ◽  
Vol 117 (4) ◽  
pp. 1355-1367 ◽  
Author(s):  
P.A. De Sousa ◽  
G. Valdimarsson ◽  
B.J. Nicholson ◽  
G.M. Kidder

Gap junction assembly in the preimplantation mouse embryo is a temporally regulated event, beginning a few hours after the third cleavage during the morphogenetic event known as compaction. Recently, we demonstrated that both mRNA and protein corresponding to connexin43, a gap junction protein, accumulate through preimplantation development beginning at least as early as the 4-cell stage. Using an antibody raised against a synthetic C-terminal peptide of connexin43, this protein was shown to assemble into gap junction-like plaques beginning at compaction (G. Valdimarsson, P. A. De Sousa, E. C. Beyer, D. L. Paul and G. M. Kidder (1991). Molec. Reprod. Dev. 30, 18–26). The purpose of the present study was to follow the fate of nascent connexin43 during preimplantation development, from synthesis to plaque insertion, and to learn more about the control of gap junction assembly during compaction. Cell fractionation and reverse transcription-polymerase chain reaction were employed to show that connexin43 mRNA is in polyribosomes at the 4-cell stage, suggesting that synthesis of connexin43 begins at least one cell cycle in advance of when gap junctions first form. The fate of nascent connexin43 was then followed throughout preimplantation development by means of laser confocal microscopy, using two other peptide (C-terminal)-specific antibodies. As was reported previously, connexin43 could first be detected in gap junction-like plaques beginning in the 8-cell stage, at which time considerable intracellular immunoreactivity could be seen as well. Later, connexin43 becomes differentially distributed in the apposed plasma membranes of morulae and blastocysts: a zonular distribution predominates between outside blastomeres and trophectoderm cells whereas plaque-like localizations predominate between inside blastomeres and cells of the inner cell mass. The cytoplasmic immunoreactivity in morulae was deemed to be nascent connexin en route to the plasma membrane since it could be abolished by treatment with cycloheximide, and redistributed by treatment with monensin or brefeldin-A, known inhibitors of protein trafficking. Treatment of uncompacted 8-cell embryos with either monensin or brefeldin-A inhibited the appearance of gap junction-like structures and the onset of gap junctional coupling in a reversible manner. These data demonstrate that the regulated step in the onset of gap junction assembly during compaction is downstream of transcription and translation and involves mobilization of connexin43 through trafficking organelles to plasma membranes.

Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1353-1361
Author(s):  
J.M. Baltz ◽  
J.D. Biggers ◽  
C. Lechene

Most cell types are relatively impermeant to H+ and are able to regulate their intracellular pH by means of plasma membrane proteins, which transport H+ or bicarbonate across the membrane in response to perturbations of intracellular pH. Mouse preimplantation embryos at the 2-cell stage, however, do not appear to possess specific pH-regulatory mechanisms for relieving acidosis. They are, instead, highly permeable to H+, so that the intracellular pH in the acid and neutral range is determined by the electrochemical equilibrium of H+ across the plasma membrane. When intracellular pH is perturbed, the rate of the ensuing H+ flux across the plasma membrane is determined by the H+ electrochemical gradient: its dependence on external K+ concentration indicates probable dependence on membrane potential and the rate depends on the H+ concentration gradient across the membrane. The large permeability at the 2-cell stage is absent or greatly diminished in the trophectoderm of blastocysts, but still present in the inner cell mass. Thus, the permeability to H+ appears to be developmentally regulated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yasumitsu Masuda ◽  
Ryo Hasebe ◽  
Yasushi Kuromi ◽  
Masayoshi Kobayashi ◽  
Kanako Urataki ◽  
...  

Conception rates for transferred bovine embryos are lower than those for artificial insemination. Embryo transfer (ET) is widely used in cattle but many of the transferred embryos fail to develop, thus, a more effective method for selecting bovine embryos suitable for ET is required. To evaluate the developmental potential of bovine preimplantation embryos (2-cell stage embryos and blastocysts), we have used the non-invasive method of optical coherence tomography (OCT) to obtain live images. The images were used to evaluate 22 parameters of blastocysts, such as the volume of the inner cell mass and the thicknesses of the trophectoderm (TE). Bovine embryos were obtained by in vitro fertilization (IVF) of the cumulus-oocyte complexes aspirated by ovum pick-up from Japanese Black cattle. The quality of the blastocysts was examined under an inverted microscope and all were confirmed to be Code1 according to the International Embryo Transfer Society standards for embryo evaluation. The OCT images of embryos were taken at the 2-cell and blastocyst stages prior to the transfer. In OCT, the embryos were irradiated with near-infrared light for a few minutes to capture three-dimensional images. Nuclei of the 2-cell stage embryos were clearly observed by OCT, and polynuclear cells at the 2-cell stage were also clearly found. With OCT, we were able to observe embryos at the blastocyst stage and evaluate their parameters. The conception rate following OCT (15/30; 50%) is typical for ETs and no newborn calves showed neonatal overgrowth or died, indicating that the OCT did not adversely affect the ET. A principal components analysis was unable to identify the parameters associated with successful pregnancy, while by using hierarchical clustering analysis, TE volume has been suggested to be one of the parameters for the evaluation of bovine embryo. The present results show that OCT imaging can be used to investigate time-dependent changes of IVF embryos. With further improvements, it should be useful for selecting high-quality embryos for transfer.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 743-753 ◽  
Author(s):  
J.E. Collins ◽  
J.E. Lorimer ◽  
D.R. Garrod ◽  
S.C. Pidsley ◽  
R.S. Buxton ◽  
...  

The molecular mechanisms regulating the biogenesis of the first desmosomes to form during mouse embryogenesis have been studied. A sensitive modification of a reverse transcriptase-cDNA amplification procedure has been used to detect transcripts of the desmosomal adhesive cadherin, desmocollin. Sequencing of cDNA amplification products confirmed that two splice variants, a and b, of the DSC2 gene are transcribed coordinately. Transcripts were identified in unfertilized eggs and cumulus cells and in cleavage stages up to the early 8-cell stage, were never detected in compact 8-cell embryos, but were evident again either from the 16-cell morula or very early blastocyst (approx 32-cells) stages onwards. These two phases of transcript detection indicate DSC2 is encoded by maternal and embryonic genomes. Previously, we have shown that desmocollin protein synthesis is undetectable in eggs and cleavage stages but initiates at the early blastocyst stage when desmocollin localises at, and appears to regulate assembly of, nascent desmosomes that form in the trophectoderm but not in the inner cell mass (Fleming, T. P., Garrod, D. R. and Elsmore, A. J. (1991), Development 112, 527–539). Maternal DSC2 mRNA is therefore not translated and presumably is inherited by blastomeres before complete degradation. Our results suggest, however, that initiation of embryonic DSC2 transcription regulates desmocollin protein expression and thereby desmosome formation. Moreover, data from blastocyst single cell analyses suggest that embryonic DSC2 transcription is specific to the trophectoderm lineage. Inhibition of E-cadherin-mediated cell-cell adhesion did not influence the timing of DSC2 embryonic transcription and protein expression. However, isolation and culture of inner cell masses induced an increase in the amount of DSC2 mRNA and protein detected. Taken together, these results suggest that the presence of a contact-free cell surface activates DSC2 transcription in the mouse early embryo.


Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 1145-1151 ◽  
Author(s):  
Q. Javed ◽  
T.P. Fleming ◽  
M. Hay ◽  
S. Citi

The expression of the tight junction peripheral membrane protein, cingulin (140 × 10(3) M(r), was investigated in mouse eggs and staged preimplantation embryos by immunoblotting and immunoprecipitation. Polyclonal antibody to chicken brush cingulin detected a single 140 × 10(3) M(r) protein in immunoblots of unfertilised eggs and all preimplantation stages. Relative protein levels were high in eggs and early cleavage stages, declined during later cleavage and increased again in expanding blastocysts. Quantitative immunoprecipitation of metabolically labelled eggs and staged embryos also revealed a biphasic pattern for cingulin synthesis with relative net levels being high in unfertilised eggs, minimal during early cleavage, rising 2.3-fold specifically at the onset of compaction (8-cell stage, when tight junction formation begins), and increasing further at a linear rate during morula and blastocyst stages. Cingulin synthesis in eggs is not influenced by fertilisation (or aging, if unfertilised), but this level declines sharply after first cleavage. These results indicate that cingulin is expressed by both maternal and embryonic genomes. The turnover of maternal cingulin (unfertilised eggs) and embryonic cingulin at a stage before tight junction formation begins (4-cell stage) is higher (t1/2 approximately 4 hours) than cingulin synthesised after tight junction formation (blastocysts; t1/2 approximately 10 hours). This increase in cingulin stability is reversed in the absence of extracellular calcium. Cingulin synthesis is also tissue-specific in blastocysts, being up-regulated in trophectoderm and down-regulated in the inner cell mass. Taken together, the results suggest that (i) cingulin may have a role during oogenesis and (ii) cell-cell contact patterns regulate cingulin biosynthesis during early morphogenesis, contributing to lineage-specific epithelial maturation.


Reproduction ◽  
2001 ◽  
pp. 957-963 ◽  
Author(s):  
A Nishikimi ◽  
T Matsukawa ◽  
K Hoshino ◽  
S Ikeda ◽  
Y Kira ◽  
...  

Changes in the activities of nitric oxide synthase (NOS) during embryonic development, and the distribution of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) isoforms were examined in unfertilized mouse oocytes at the second meiotic metaphase (MII) stage and in fertilized mouse embryos during preimplantation development. In addition, the effects of NOS inhibitors on mouse preimplantation development in vitro were investigated. The activities of NOS in MII oocytes and fertilized embryos during the preimplantation period were determined by NADPH-diaphorase staining. Although NOS activity was detected in unfertilized MII oocytes, the intensity of staining was much weaker than that of fertilized embryos at the one-cell stage. There was a decrease in NOS activity in embryos from the four-cell to the eight-cell stage; however, NOS activity increased again in embryos at the morula stage, particularly in the inner cell population. In the expanded blastocysts, staining was confined to the inner cell mass. Immuno-cytochemical staining showed that eNOS and iNOS were expressed in the cytoplasm of oocytes and embryos during the preimplantation period, and eNOS was also distributed in the nuclei of the embryos. When one-cell embryos were treated with 1 mmol N(omega)-nitro-L-arginine methyl ester (L-NAME) l(-1), their development in vitro was arrested at the two-cell stage. This inhibition of development was overcome by the addition of 1 mmol L-arginine l(-1) to the medium. These observations indicate that nitric oxide plays an important role as a diffusible regulator of cell proliferation and differentiation, especially at the developmental transition from the two-cell to the four-cell stage during preimplantation development of mice.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1550 ◽  
Author(s):  
Marwa El Sheikh ◽  
Ahmed Atef Mesalam ◽  
Muhammad Idrees ◽  
Tabinda Sidrat ◽  
Ayman Mesalam ◽  
...  

Nicotinamide (NAM), the amide form of vitamin B3, plays pivotal roles in regulating various cellular processes including energy production and maintenance of genomic stability. The current study aimed at deciphering the effect of NAM, when administered during in vitro maturation (IVM), on the developmental competence of bovine preimplantation embryos. Our results showed that low NAM concentrations reduced the oxidative stress and improved mitochondrial profile, total cleavage and 8–16 cell stage embryo development whereas the opposite profile was observed upon exposure to high NAM concentrations (10 mM onward). Remarkably, the hatching rates of day-7 and day-8 blastocysts were significantly improved under 0.1 mM NAM treatment. Using RT-qPCR and immunofluorescence, the autophagy-related (Beclin-1 (BECN1), LC3B, and ATG5) and the apoptotic (Caspases; CASP3 and 9) markers were upregulated in oocytes exposed to high NAM concentration (40 mM), whereas only CASP3 was affected, downregulated, following 0.1 mM treatment. Additionally, the number of cells per blastocyst and the levels of SIRT1, PI3K, AKT, and mTOR were higher, while the inner cell mass-specific transcription factors GATA6, SOX2, and OCT4 were more abundant, in day-8 embryos of NAM-treated group. Taken together, to our knowledge, this is the first study reporting that administration of low NAM concentrations during IVM can ameliorate the developmental competence of embryos through the potential regulation of oxidative stress, apoptosis, and SIRT1/AKT signaling.


Development ◽  
1989 ◽  
Vol 105 (2) ◽  
pp. 317-322 ◽  
Author(s):  
J. Tesarik

Considerable evidence indicates that the first phenotypical diversification of embryonic cells during mammalian preimplantation development is achieved in two successive steps: (i) generation of cell asymmetry and (ii) unequal cell division. This paper shows that ultrastructural signs of blastomere surface regionalization in human preimplantation embryos are evident as early as the 2-cell stage when modifications of the plasma membrane (loss of microvilli and endocytotic activity, formation of cell junctions) are induced in places of blastomere contact. The capacity of the plasma membrane to undergo these cell-contact-dependent changes precedes any detectable activity of the embryonic genome. The area of the modified plasma membrane shows a continuous increase during the first three cleavage stages. The progression of these membrane modifications is the same in embryos that have properly enhanced their transcriptional activity at the 8-cell stage and in those that have not. In spite of the failure of this early-cleavage-progressed-cleavage transition of gene activity, the formation of zonula adherens and gap junctions goes on apparently normally in the respective embryos and morphologically distinct inner cell mass and trophectoderm cell lineages are subsequently segregated in 16-cell morulae. However, tight junctions do not develop under these conditions. The occurrence of the progressed-cleavage pattern of gene activity in the majority of embryonic cells is a necessary prerequisite for the appearance of the blastocyst cavity. Thus, oocyte-coded message is apparently involved in the control of relatively late stages of human preimplantation development including the differentiation of the first two embryonic tissues, but the embryonic genome is required for the full achievement of this early differentiative event.


Reproduction ◽  
2003 ◽  
pp. 457-468 ◽  
Author(s):  
JA Stanton ◽  
AB Macgregor ◽  
DP Green

Mouse preimplantation development represents a tightly controlled programme of gene expression and cell division, which starts with the fertilized egg and ends with implantation of the blastocyst approximately 4.5 days later. Spatial and temporal differences in gene expression underpin establishment of axes at the two-cell stage and development of the trophectoderm and inner cell mass after embryo compaction at the eight-cell stage. Approximately 15 700 mouse genes expressed during preimplantation development have been identified from cDNA sequences deposited in the UniGene database of the National Institutes of Health. This inventory of preimplantation genes is the starting point for identifying signalling modules that function in preimplantation development.


2021 ◽  
Author(s):  
Joke Mertens ◽  
Marius Regin ◽  
Neelke De Munck ◽  
Edouard Couvreu de Deckersberg ◽  
Florence Belva ◽  
...  

Humans present remarkable mitochondrial DNA (mtDNA) variant mosaicism, not only across tissues but even across individual cells within one person. The timing of the first appearance of this mosaicism has not yet been established. In this study, we hypothesized it occurs during preimplantation development. To investigate this, we deep-sequenced the mtDNA of 254 oocytes from 85 donors, 158 single blastomeres of 25 day-3 embryos, 17 inner cell mass and trophectoderm samples of 7 day-5 blastocysts, 142 bulk DNA and 68 single cells of different adult tissues. We found that day-3 preimplantation embryos already present blastomeres that carry variants unique to that cell, showing that the first events of mtDNA mosaicism happen very early in human development. We classified the mtDNA variants based on their recurrence or uniqueness across sibling oocytes and embryos, and between single cells and samples from the same embryos or adult individuals. Variants that recurred across samples had higher heteroplasmic loads and more frequently resulted in synonymous changes or were located in non-coding regions than variants that were unique to one oocyte or single embryonic cell. These differences were maintained through developmental stages, suggesting that the mtDNA mosaicism arising in preimplantation development is maintained into adulthood. Further, the results support a model in which close clustering of mitochondria carrying specific mtDNA variants in the ooplasm leads to asymmetric distribution of these mitochondria throughout the cell divisions of the preimplantation embryo, resulting in the appearance of the first form of mtDNA mosaicism in human development.


2008 ◽  
Vol 20 (1) ◽  
pp. 165 ◽  
Author(s):  
T. A. L. Brevini ◽  
S. Antonini ◽  
F. Cillo ◽  
G. Pennarossa ◽  
S. Colleoni ◽  
...  

Sox2 is a member of the Sox (SRY-related HMGbox) family. It acts to maintain developmental potential and marks the pluripotent lineage of the early mouse embryo; in particular, as in the case of Oct-4 and Nanog, Sox2 is expressed specifically in the inner cell mass (ICM) and in the epiblast of this species. Moreover, it plays an important role in the transcription network that maintains stem cell pluripotency, interacting with other factors such as Oct-4 and Nanog. Little information is available on this gene in bovine; therefore aims of the present study were: a) to identify and characterize the Sox2 expression profile in bovine oocytes and preimplantation embryos; and b) to investigate its expression pattern in ICM and trophectoderm (TE). Bovine oocytes and embryos were obtained by in vitro maturation and fertilization; blastocysts at Day 7 post-insemination underwent microsurgery to separate TE from ICM. mRNA was isolated from 3 pools, each consisting of 5 MII oocytes, 2-, 4-, 8-, and 16-cell embryos, morulae, blastocysts, ICMs, and TEs. Semi-quantitative analysis of Sox2 expression was performed in the exponential phase of PCR amplification using rabbit globin as exogenous control. Data were analyzed with one-way ANOVA, followed by multiple pairwise comparisons with Tukey test (SigmaStat 2.03, SPSS, Inc., Chicago, IL, USA). Values are presented as mean � SEM and differences of P ≤ 0.05 are considered significant. In order to rule out false negative results, PCR amplifications of isolated ICMs and TEs were extended to the plateau phase. Fragment identity was confirmed by sequencing. Comparison of bovine Sox2 cDNA sequence (EMBL AM774325) with databases revealed a 98%, 93%, and 87% homology with sheep, human, and mouse, respectively. Sox2 mRNA was detectable in oocytes as well as in embryos at the different developmental stages analyzed. Semi-quantitative expression studies revealed that Sox2 was present as both maternal and embryonic transcript; in particular, a statistically significant increase from the 8-cell stage, concomitant with embryo genome activation, was observed. Differently from the mouse, Sox2 was expressed in both bovine ICM and TE, resembling the profile previously shown for Oct-4 (van Eijk et al. 1999 Biol. Reprod. 60, 1093–1103), and suggesting that Sox2 expression might be regulated by Oct-4 also in bovine, as described in mouse and human. These findings also suggest that its expression may become restricted to the ICM only at the expanded hatched stage, as previously described for Oct-4 in pig embryos (Vejlsted et al. 2006 Mol. Reprod. Dev. 73, 709–718). This work was supported by PRIN 2006, FIRST 2005, TECLA-MIUR, and EUROSTELLS-ESF.


Sign in / Sign up

Export Citation Format

Share Document