The role of E-cadherin and integrins in mesoderm differentiation and migration at the mammalian primitive streak

Development ◽  
1993 ◽  
Vol 118 (3) ◽  
pp. 829-844 ◽  
Author(s):  
C.A. Burdsal ◽  
C.H. Damsky ◽  
R.A. Pedersen

We have examined the role of cell-cell and cell-extracellular matrix (ECM) interactions during mesoderm differentiation and migration at the primitive streak of the mouse embryo with the use of function-perturbing antibodies. Explants of epiblast or mesoderm tissue dissected from the primitive streak of 7.5- to 7.8-day mouse embryos were cultured on a fibronectin substratum in serum-free, chemically defined medium. After 16–24 hours in culture, cells in explants of epiblast exhibited the typical close-packed morphology of epithelia, and the tissue remained as a coherent patch of cells that were shown to express transcripts of the cytokeratin Endo B by in situ analysis. In contrast, cells in explants of primitive streak mesoderm exhibited a greatly flattened, fibroblastic morphology, did not express Endo B transcripts, and migrated away from the center of the explant. As epiblast cells in vivo undergo the epithelial-mesenchymal transition at the primitive streak, they cease expressing the prominent calcium-sensitive cell adhesion molecule E-cadherin (uvomorulin, Cell-CAM 120/80). We asked whether the loss of E-cadherin expression was a passive result of differentiation or if it might play a more causative role in mesoderm differentiation and migration. Culture with function-perturbing antibodies against E-cadherin caused cells within epiblast explants to lose cell-cell contacts, to flatten, and to assume a mesenchymal morphology; they were also induced to migrate. Anti-E-cadherin antibodies had no effect on explants of primitive streak mesoderm. In immunofluorescence studies, anti-E-cadherin-treated epiblast cells ceased to express SSEA-1, a carbohydrate moiety that is lost as mesoderm differentiates from the epiblast in vivo, and they also ceased to express E-cadherin itself. In contrast, these cells began to express the intermediate filament protein vimentin, a cytoskeletal protein characteristic of the primitive streak mesoderm at this stage of development. As epiblast cells differentiate into mesoderm, their predominant adhesive interactions change from cell-cell to cell-substratum. Therefore, we also investigated the adhesive interactions between primitive streak tissues and extracellular matrix (ECM) components. Epiblast explants adhered well to fibronectin, more poorly to laminin and type IV collagen, and not at all to vitronectin. In contrast, mesoderm explants attached well to all these proteins. Furthermore, epiblast, but not mesoderm, displayed an anchorage-dependent viability in culture. After anti-E-cadherin treatment, epiblast cells that had assumed the mesenchymal morphology did attach to vitronectin, another characteristic shared with primitive streak mesoderm.(ABSTRACT TRUNCATED AT 400 WORDS)

2020 ◽  
Author(s):  
D.M.K. Aladin ◽  
Y.S. Chu ◽  
R.C. Robinson ◽  
S. Dufour ◽  
V. Viasnoff ◽  
...  

Cadherins control intercellular adhesion in most metazoans. In vertebrates, intercellular adhesion differs considerably between cadherins of type-I and type-II, predominantly due to their different extracellular regions. Yet, intercellular adhesion critically depends on actomyosin contractility, in which the role of the cadherin extracellular region is unclear. Here, we dissect the roles of the Extracellular Cadherin (EC) Ig-like domains by expressing chimeric E-cadherin with E-cadherin and cadherin-7 Ig-like domains in cells naturally devoid of cadherins. Using cell-cell separation, cortical tension measurement, tissue-scale stretching and migration assays, we show that distinct EC repeats in the extracellular region of cadherins differentially modulate epithelial sheet integrity, cell-cell separation forces, and cell cortical tension through a Cdc42 pathway, which further differentially regulate epithelial tensile strength, ductility, and ultimately collective migration. Interestingly, dissipative processes rather than static adhesion energy mostly dominate cell-cell separation forces. We provide a framework for the emergence of epithelial phenotypes from cell mechanical properties dependent on EC outside-in signalling.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260593
Author(s):  
Darwesh Mohideen Kaderbatcha Aladin ◽  
Yeh Shiu Chu ◽  
Shuo Shen ◽  
Robert Charles Robinson ◽  
Sylvie Dufour ◽  
...  

Cadherins control intercellular adhesion in most metazoans. In vertebrates, intercellular adhesion differs considerably between cadherins of type-I and type-II, predominantly due to their different extracellular regions. Yet, intercellular adhesion critically depends on actomyosin contractility, in which the role of the cadherin extracellular region is unclear. Here, we dissect the roles of the Extracellular Cadherin (EC) Ig-like domains by expressing chimeric E-cadherin with E-cadherin and cadherin-7 Ig-like domains in cells naturally devoid of cadherins. Using cell-cell separation, cortical tension measurement, tissue stretching and migration assays, we show that distinct EC repeats in the extracellular region of cadherins differentially modulate epithelial sheet integrity, cell-cell separation forces, and cell cortical tension with the Cdc42 pathway, which further differentially regulate epithelial tensile strength, ductility, and ultimately collective migration. Interestingly, dissipative processes rather than static adhesion energy mostly dominate cell-cell separation forces. We provide a framework for the emergence of epithelial phenotypes from cell mechanical properties dependent on EC outside-in signaling.


2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 349
Author(s):  
Nausika Betriu ◽  
Juan Bertran-Mas ◽  
Anna Andreeva ◽  
Carlos E. Semino

Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1870
Author(s):  
Klaudia Skrzypek ◽  
Grażyna Adamek ◽  
Marta Kot ◽  
Bogna Badyra ◽  
Marcin Majka

Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessia Varone ◽  
Chiara Amoruso ◽  
Marcello Monti ◽  
Manpreet Patheja ◽  
Adelaide Greco ◽  
...  

Abstract Background Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. Methods Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. Results The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. Conclusion The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jeffrey D. Amack

AbstractEpithelial-mesenchymal transition (EMT) refers to a process in which epithelial cells lose apical-basal polarity and loosen cell–cell junctions to take on mesenchymal cell morphologies and invasive properties that facilitate migration through extracellular matrix. EMT—and the reverse mesenchymal-epithelial transition (MET)—are evolutionarily conserved processes that are used throughout embryonic development to drive tissue morphogenesis. During adult life, EMT is activated to close wounds after injury, but also can be used by cancers to promote metastasis. EMT is controlled by several mechanisms that depend on context. In response to cell–cell signaling and/or interactions with the local environment, cells undergoing EMT make rapid changes in kinase and adaptor proteins, adhesion and extracellular matrix molecules, and gene expression. Many of these changes modulate localization, activity, or expression of cytoskeletal proteins that mediate cell shape changes and cell motility. Since cellular changes during EMT are highly dynamic and context-dependent, it is ideal to analyze this process in situ in living organisms. Embryonic development of model organisms is amenable to live time-lapse microscopy, which provides an opportunity to watch EMT as it happens. Here, with a focus on functions of the actin cytoskeleton, I review recent examples of how live in vivo imaging of embryonic development has led to new insights into mechanisms of EMT. At the same time, I highlight specific developmental processes in model embryos—gastrulation in fly and mouse embryos, and neural crest cell development in zebrafish and frog embryos—that provide in vivo platforms for visualizing cellular dynamics during EMT. In addition, I introduce Kupffer’s vesicle in the zebrafish embryo as a new model system to investigate EMT and MET. I discuss how these systems have provided insights into the dynamics of adherens junction remodeling, planar cell polarity signaling, cadherin functions, and cytoskeletal organization during EMT, which are not only important for understanding development, but also cancer progression. These findings shed light on mechanisms of actin cytoskeletal dynamics during EMT, and feature live in vivo imaging strategies that can be exploited in future work to identify new mechanisms of EMT and MET.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 2-2
Author(s):  
Annamaria Aprile ◽  
Laura Raggi ◽  
Mariangela Storto ◽  
Isabella Villa ◽  
Sarah Marktel ◽  
...  

In the last decade many studies unraveled the bone marrow (BM) niche regulation and crosstalk with hematopoietic stem cells (HSC) in steady state conditions and malignancies, but HSC-niche interactions are still underexplored in hematological inherited disorders. We have recently provided the first demonstration of impaired HSC function caused by an altered BM niche in a non-malignant disease, beta-thalassemia (BT) (Aprile et al., Blood 2020). BT is a congenital hemoglobin disorder resulting in severe anemia, ineffective erythropoiesis and multi-organ secondary complications, such as bone defects. It is one of the most globally widespread monogenic diseases, which can be cured by transplantation of HSC from compatible healthy donors or autologous HSC from patients upon gene therapy. Cases of graft failure have been reported, but causes have not been deeply investigated and might include an impaired HSC function and a defective supporting activity of the BM niche, worsened by age and disease progression. We showed that the prolonged residence of HSC into an altered BM stromal niche in BT Hbbth3/+ (th3) mice negatively affects stem cell number, quiescence and self-renewal. Moreover, we demonstrated that correction of HSC-stromal niche crosstalk rescues BT HSC function by in vivo reactivation of parathyroid hormone (PTH) signaling. Consistently with the common finding of osteoporosis in BT patients, we found reduced bone deposition and low levels of PTH also in the murine model. We investigated the potential mechanisms underlying the decreased PTH and bone defect and we focused on the role of fibroblast growth factor-23 (FGF-23). FGF-23 is a systemic hormone mainly secreted by osteocytes, which acts as negative regulator of bone metabolism by inhibiting bone mineralization and PTH production by parathyroid glands. Since FGF-23 is positively modulated by the anemia-related factor erythropoietin (EPO), we hypothesized that the high EPO levels in BT, subsequent to ineffective erythropoiesis, might contribute to increase FGF-23. We measured high levels of circulating FGF-23 in th3 mice (wt vs. th3: 399.7±69.77 vs. 1975±209.3 pg/ml, p<0.01) and also in BT patients (HD vs. THAL: 94.2±3.8 vs. 125.8±9.2 RU/ml, p<0.05). To provide proof of concept data of the causative role of FGF-23 on BT bone and stromal niche defects, we inhibited FGF-23 signaling. FGF-23 inhibition by in vivo administration of FGF-23 blocking peptide rescued the bone defect in th3 mice, by increasing trabecular bone mineral density (th3 vs. th3+FGF23inh: 117.7±3.3 vs. 181.1±6.9 mg/cm3, p<0.0001). Importantly, the treatment restored the frequency of HSC to levels comparable to wild-type controls by expanding the pool of quiescent cells (th3 vs. th3+FGF23inh: 0.03±0.002 vs. 0.07±0.0% on Linneg BM cells, p<0.0001). Consistently, we found increased the expression of key molecules by bone cells, such as Jagged-1 and osteopontin, involved in the functional crosstalk between HSC and the stromal niche. Interestingly, FGF-23 inhibition had also a positive anti-apoptotic effect on the expanded BM erythroid compartment, promoting the maturation of erythroid precursors, as already shown in models of secondary anemias. Preliminary evidence in BT patients showed negative correlations between FGF-23 levels and markers of bone homeostasis (e.g. osteocalcin and vitamin D) and positive correlations with makers of ineffective erythropoiesis (e.g. reticulocytes), thus proposing FGF-23 as the molecule at the crossroads of erythropoiesis and bone metabolism in BT. In vivo studies and molecular analysis in th3 mice and patients' samples will better unravel the causative role of EPO on FGF-23 levels in BT and the negative impact of high FGF-23 on bone mineralization and BM stromal niche-HSC interactions. Our findings uncover an underexplored role of FGF-23 in bone and BM niche defects in BT, as a condition of severe anemia and chronic EPO stimulation. The inhibition of FGF-23 signaling might provide a novel strategy to ameliorate bone compartment and restore HSC-BM niche interactions in BT, with a potential translational relevance in improving HSC transplantation approaches. Disclosures Motta: Sanofi Genzyme: Honoraria. Cappellini:BMS: Honoraria; CRISPR Therapeutics, Novartis, Vifor Pharma: Membership on an entity's Board of Directors or advisory committees; Genzyme/Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document