scholarly journals The lin-3/let-23 pathway mediates inductive signalling during male spicule development in Caenorhabditis elegans

Development ◽  
1994 ◽  
Vol 120 (10) ◽  
pp. 2713-2721 ◽  
Author(s):  
H.M. Chamberlin ◽  
P.W. Sternberg

During Caenorhabditis elegans male spicule development, four pairs of precursor cells respond to multiple positional cues and establish a pattern of fates that correlates with relative anterior-posterior cell position. One of the extracellular cues is provided by the F and U cells, which promote anterior fates. We show that the genes in the lin-3/let-23 signalling pathway required for hermaphrodite vulval induction also mediate this F/U signal. Reduction-of-function mutations in lin-3, let-23, sem-5, let-60 or lin-45 disrupt the fate of anterior cells. Likewise, activation of the pathway with ubiquitously produced signal results in posterior cells inappropriately adopting the anterior fates even in the absence of F and U. We have further used this genetic pathway to begin to understand how multiple positional cues are integrated to specify cell fate. We demonstrate that lin-15 acts in spicule development as it does in vulval induction, as a negative regulator of let-23 receptor activity. A second extracellular cue, from Y.p, also acts antagonistically to the lin-3/let-23 pathway. However, this signal is apparently integrated into the lin-3/let-23 pathway at some step after lin-45 raf and is thus functionally distinct from lin-15. We have also investigated the role of lin-12 in forming the anterior/posterior pattern of fates. A lin-12 gain-of-function defect is masked by redundant positional information from F and U.

Development ◽  
2001 ◽  
Vol 128 (17) ◽  
pp. 3253-3261 ◽  
Author(s):  
Nirupama Deshpande ◽  
Rainer Dittrich ◽  
Gerhard M. Technau ◽  
Joachim Urban

The Drosophila central nervous system derives from neural precursor cells, the neuroblasts (NBs), which are born from the neuroectoderm by the process of delamination. Each NB has a unique identity, which is revealed by the production of a characteristic cell lineage and a specific set of molecular markers it expresses. These NBs delaminate at different but reproducible time points during neurogenesis (S1-S5) and it has been shown for early delaminating NBs (S1/S2) that their identities depend on positional information conferred by segment polarity genes and dorsoventral patterning genes. We have studied mechanisms leading to the fate specification of a set of late delaminating neuroblasts, NB 6-4 and NB 7-3, both of which arise from the engrailed (en) expression domain, with NB 6-4 delaminating first. In contrast to former reports, we did not find any evidence for a direct role of hedgehog in the process of NB 7-3 specification. Instead, we present evidence to show that the interplay of the segmentation genes naked cuticle (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment to NB 6-4 and NB 7-3 cell fate. In the absence of either nkd or gsb, one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.


2020 ◽  
Vol 117 (2) ◽  
pp. 1090-1096 ◽  
Author(s):  
Maria Félix Bastida ◽  
Rocío Pérez-Gómez ◽  
Anna Trofka ◽  
Jianjian Zhu ◽  
Alvaro Rada-Iglesias ◽  
...  

In the tetrapod limb, the digits (fingers or toes) are the elements most subject to morphological diversification in response to functional adaptations. However, despite their functional importance, the mechanisms controlling digit morphology remain poorly understood. Here we have focused on understanding the special morphology of the thumb (digit 1), the acquisition of which was an important adaptation of the human hand. To this end, we have studied the limbs of the Hoxa13 mouse mutant that specifically fail to form digit 1. We show that, consistent with the role of Hoxa13 in Hoxd transcriptional regulation, the expression of Hoxd13 in Hoxa13 mutant limbs does not extend into the presumptive digit 1 territory, which is therefore devoid of distal Hox transcripts, a circumstance that can explain its agenesis. The loss of Hoxd13 expression, exclusively in digit 1 territory, correlates with increased Gli3 repressor activity, a Hoxd negative regulator, resulting from increased Gli3 transcription that, in turn, is due to the release from the negative modulation exerted by Hox13 paralogs on Gli3 regulatory sequences. Our results indicate that Hoxa13 acts hierarchically to initiate the formation of digit 1 by reducing Gli3 transcription and by enabling expansion of the 5′Hoxd second expression phase, thereby establishing anterior−posterior asymmetry in the handplate. Our work uncovers a mutual antagonism between Gli3 and Hox13 paralogs that has important implications for Hox and Gli3 gene regulation in the context of development and evolution.


2015 ◽  
Vol 309 (8) ◽  
pp. C511-C521 ◽  
Author(s):  
Laura Novellasdemunt ◽  
Pedro Antas ◽  
Vivian S. W. Li

The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery.


Development ◽  
1998 ◽  
Vol 125 (15) ◽  
pp. 2771-2780 ◽  
Author(s):  
F. Maschat ◽  
N. Serrano ◽  
N.B. Randsholt ◽  
G. Geraud

Engrailed is a nuclear regulatory protein with essential roles in embryonic segmentation and wing morphogenesis. One of its regulatory targets in embryos was shown to be the Polycomb group gene, polyhomeotic. We show here that transheterozygous adult flies, mutant for both engrailed and polyhomeotic, show a gap in the fourth vein. In the corresponding larval imaginal discs, a polyhomeotic-lacZ enhancer trap is not normally activated in anterior cells adjacent to the anterior-posterior boundary. This intermediary region corresponds to the domain of low engrailed expression that appears in the anterior compartment, during L3. Several arguments show that engrailed is responsible for the induction of polyhomeotic in these cells. The role of polyhomeotic in this intermediary region is apparently to maintain the repression of hedgehog in the anterior cells abutting the anterior-posterior boundary, since these cells ectopically express hedgehog when polyhomeotic is not activated. This leads to ectopic expressions first of patched, then of cubitus interruptus and decapentaplegic in the posterior compartment, except for the dorsoventral border cells that are not affected. Thus posterior cells express a new set of genes that are normally characteristic of anterior cells, suggesting a change in the cell identity. Altogether, our data indicate that engrailed and polyhomeotic interactions are required to maintain the anterior-posterior boundary and the posterior cell fate, just prior to the evagination of the wing.


1994 ◽  
Vol 5 (4) ◽  
pp. 395-411 ◽  
Author(s):  
L S Huang ◽  
P Tzou ◽  
P W Sternberg

During Caenorhabditis elegans vulval development, an inductive signal from the anchor cell stimulates three of the six vulval precursor cells (VPCs) to adopt vulval rather than nonvulval epidermal fates. Genes necessary for this induction include the lin-3 growth factor, the let-23 receptor tyrosine kinase, and let-60 ras. lin-15 is a negative regulator of this inductive pathway. In lin-15 mutant animals, all six VPCs adopt vulval fates, even in the absence of inductive signal. Previous genetic studies suggested that lin-15 is a complex locus with two independently mutable activities, A and B. We have cloned the lin-15 locus by germline transformation and find that it encodes two nonoverlapping transcripts that are transcribed in the same direction. The downstream transcript encodes the lin-15A function; the upstream transcript encodes the lin-15B function. The predicted lin-15A and lin-15B proteins are novel and hydrophilic. We have identified a molecular null allele of lin-15 and have used it to analyze the role of lin-15 in the signaling pathway. We find that lin-15 acts upstream of let-23 and in parallel to the inductive signal.


2010 ◽  
Vol 10 ◽  
pp. 2207-2214 ◽  
Author(s):  
A. J. Durston ◽  
H. J. Jansen ◽  
S. A. Wacker

We review a recently discovered developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early nonorganizer mesoderm (NOM) and the Spemann organizer (SO). The timer is characterized by temporally collinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the NOM) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilized by signals from the SO. The NOM and the SO undergo timed interactions due to morphogenetic movements during gastrulation, which lead to the formation of an anterior-posterior axial pattern and stable Hox gene expression. When separated from each other, neither the NOM nor the SO is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that the NOM acquires transiently stable hox codes and spatial collinearity, and that morphogenetic movements then continually bring new cells from the NOM within the range of SO signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and, thereby, create patterned axial structures. In doing so, the age of the NOM, but not the age of the SO, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the NOM is linked to mesodermal Hox expression. The role of the SO for trunk patterning turns out to be the induction of neural tissue as prerequisite for neural hox patterning. Apparently, development of a stable anterior-posterior pattern requires neural hox patterning. We believe that this mechanism represents a developmental principle.


2020 ◽  
Vol 64 (10-11-12) ◽  
pp. 453-463
Author(s):  
Yue Wang ◽  
Jérémie Kropp ◽  
Nadya Morozova

The notions of positional information and positional value describe the role of cell position in cell development and pattern formation. Despite their frequent usage in literature, their definitions are blurry, and are interpreted differently by different researchers. Through reflection on previous definitions and usage, and analysis of related experiments, we propose three clear and verifiable criteria for positional information/value. Then we reviewed literature on molecular mechanisms of cell development and pattern formation, to search for a possible molecular basis of positional information/value, including those used in theoretical models. We conclude that although morphogen gradients and cell-to-cell contacts are involved in the pattern formation process, complete molecular explanations of positional information/value are still far from reality.


2018 ◽  
Vol 115 (13) ◽  
pp. E2930-E2939 ◽  
Author(s):  
David Angeles-Albores ◽  
Carmie Puckett Robinson ◽  
Brian A. Williams ◽  
Barbara J. Wold ◽  
Paul W. Sternberg

RNA-sequencing (RNA-seq) is commonly used to identify genetic modules that respond to perturbations. In single cells, transcriptomes have been used as phenotypes, but this concept has not been applied to whole-organism RNA-seq. Also, quantifying and interpreting epistatic effects using expression profiles remains a challenge. We developed a single coefficient to quantify transcriptome-wide epistasis that reflects the underlying interactions and which can be interpreted intuitively. To demonstrate our approach, we sequenced four single and two double mutants of Caenorhabditis elegans. From these mutants, we reconstructed the known hypoxia pathway. In addition, we uncovered a class of 56 genes with HIF-1–dependent expression that have opposite changes in expression in mutants of two genes that cooperate to negatively regulate HIF-1 abundance; however, the double mutant of these genes exhibits suppression epistasis. This class violates the classical model of HIF-1 regulation but can be explained by postulating a role of hydroxylated HIF-1 in transcriptional control.


Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1947-1956 ◽  
Author(s):  
V. Ambros

In Caenorhabditis elegans, the fates of the six multipotent vulva precursor cells (VPCs) are specified by extracellular signals. One VPC expresses the primary (1 degrees) fate in response to a Ras-mediated inductive signal from the gonad. The two VPCs flanking the 1 degrees cell each express secondary (2 degrees) fates in response to lin-12-mediated lateral signaling. The remaining three VPCs each adopt the non-vulval tertiary (3 degrees) fate. Here I describe experiments examining how the selection of these vulval fates is affected by cell cycle arrest and cell cycle-restricted lin-12 activity. The results suggest that lin-12 participates in two developmental decisions separable by cell cycle phase: lin-12 must act prior to the end of VPC S phase to influence a 1 degrees versus 2 degrees cell fate choice, but must act after VPC S phase to influence a 3 degrees versus 2 degrees cell fate choice. Coupling developmental decisions to cell cycle transitions may provide a mechanism for prioritizing or ordering choices of cell fates for multipotential cells.


Sign in / Sign up

Export Citation Format

Share Document