scholarly journals Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms

2015 ◽  
Vol 309 (8) ◽  
pp. C511-C521 ◽  
Author(s):  
Laura Novellasdemunt ◽  
Pedro Antas ◽  
Vivian S. W. Li

The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery.

2020 ◽  
Vol 8 (3) ◽  
pp. 215-223 ◽  
Author(s):  
Yaritza Delgado-Deida ◽  
Kibrom M Alula ◽  
Arianne L Theiss

Abstract Mitochondria are dynamic organelles that play a key role in integrating cellular signaling. Mitochondrial alterations are evident in all stages of tumorigenesis and targeting mitochondrial pathways has emerged as an anticancer therapeutic strategy. The Wnt-signaling pathway regulates many fundamental cellular functions such as proliferation, survival, migration, stem-cell maintenance, and mitochondrial metabolism and dynamics. Emerging evidence demonstrates that mitochondrial-induced regulation of Wnt signaling provides an additional mechanism to influence cell-fate decisions. Crosstalk between mitochondria and Wnt signaling presents a feedforward loop in which Wnt activation regulates mitochondrial function that, in turn, drives Wnt signaling. In this mini-review, we will discuss the recent evidence revealing the mitochondrial control of Wnt signaling and its implications for tumorigenesis and anticancer therapeutic targeting.


2008 ◽  
Vol 105 (40) ◽  
pp. 15417-15422 ◽  
Author(s):  
Jennifer A. Kennell ◽  
Isabelle Gerin ◽  
Ormond A. MacDougald ◽  
Ken M. Cadigan

Wnt signaling plays many important roles in animal development. This evolutionarily conserved signaling pathway is highly regulated at all levels. To identify regulators of the Wnt/Wingless (Wg) pathway, we performed a genetic screen in Drosophila. We identified the microRNA miR-8 as an inhibitor of Wg signaling. Expression of miR-8 potently antagonizes Wg signaling in vivo, in part by directly targeting wntless, a gene required for Wg secretion. In addition, miR-8 inhibits the pathway downstream of the Wg signal by repressing TCF protein levels. Another positive regulator of the pathway, CG32767, is also targeted by miR-8. Our data suggest that miR-8 potently antagonizes the Wg pathway at multiple levels, from secretion of the ligand to transcription of target genes. In addition, mammalian homologues of miR-8 promote adipogenesis of marrow stromal cells by inhibiting Wnt signaling. These findings indicate that miR-8 family members play an evolutionarily conserved role in regulating the Wnt signaling pathway.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3356-3356
Author(s):  
A. Keith Stewart ◽  
Yuan Xiao Zhu ◽  
Maryan Yahyapour ◽  
Armen Manoukian ◽  
Sam E. Scanga

Abstract High throughput sequencing, gene expression profiling and protein biochemistry in myeloma have all consistently revealed elevated expression of wnt signaling pathways in malignant plasma cells. Indeed, downregulation of the Wnt pathway in myeloma cells has recently been shown to inhibit myeloma cellular proliferation. Preliminary pharmacogenomic studies have also suggested that hyperactivation of the wnt signaling antagonist DKK-1 is associated with response to the immunomodulators thalidomide and revlimid. The mechanism of action for these therapeutically active drugs is however by no means clear as multiple biologic consequences of treatment have been proposed. We report here use of a drosophila model to examine wnt signaling inhibition by these pharmaceuticals. We employed a unique drosophila larval imaginal disc culture system in which wnt pathway activity is monitored through control of LacZ expression by the distalless promoter. In this system 10uM of both thalidomide and revlimid reproducibly inhibit lacZ expression when compared with vehicle controls. Western blots of larva confirmed downregulation of expression of armadillo (the drosophila b-catenin homologue) by both drugs but particularly revlimid. Lithium Chloride is an inhibitor of the drosphila GSK3b homologue shaggy and thus mimics wnt signaling by stabilizing b-catenin. The effect of Lithium could not be overcome by thalidomide or revlimid indicating that the action of these drugs is upstream of shaggy (or GSK3). Next we employed a fly transgenic for wingless which is embryonic lethal. By adding either drug to larval culture medium the lethality of wingless expression was reversed. Indeed drosophila embryos fed thalidomide exhibited developmental plate abnormalities. We next sought evidence that similar effects were evident in revlimid treated human myeloma. As previously reported most myeloma cell lines studied expressed b-catenin and this protein was downregulated by revlimid treatment of human myeloma cell lines co-incident with inhibition of growth as measured by MTT assay. We sought, but failed to find evidence of up-regulation of the wnt signaling pathway antagonist DKK-1 using an ELISA assay on pre and post treatment serum samples in patients responding to thalidomide.The implications of wnt signaling inhibition as a primary or secondary readout of therapeutic efficiency in MM may be of substantial importance in subsequent design of drug therapies or combination therapies.


2002 ◽  
Vol 22 (4) ◽  
pp. 1172-1183 ◽  
Author(s):  
Eek-hoon Jho ◽  
Tong Zhang ◽  
Claire Domon ◽  
Choun-Ki Joo ◽  
Jean-Noel Freund ◽  
...  

ABSTRACT Axin2/Conductin/Axil and its ortholog Axin are negative regulators of the Wnt signaling pathway, which promote the phosphorylation and degradation of β-catenin. While Axin is expressed ubiquitously, Axin2 mRNA was seen in a restricted pattern during mouse embryogenesis and organogenesis. Because many sites of Axin2 expression overlapped with those of several Wnt genes, we tested whether Axin2 was induced by Wnt signaling. Endogenous Axin2 mRNA and protein expression could be rapidly induced by activation of the Wnt pathway, and Axin2 reporter constructs, containing a 5.6-kb DNA fragment including the promoter and first intron, were also induced. This genomic region contains eight Tcf/LEF consensus binding sites, five of which are located within longer, highly conserved noncoding sequences. The mutation or deletion of these Tcf/LEF sites greatly diminished induction by β-catenin, and mutation of the Tcf/LEF site T2 abolished protein binding in an electrophoretic mobility shift assay. These results strongly suggest that Axin2 is a direct target of the Wnt pathway, mediated through Tcf/LEF factors. The 5.6-kb genomic sequence was sufficient to direct the tissue-specific expression of d2EGFP in transgenic embryos, consistent with a role for the Tcf/LEF sites and surrounding conserved sequences in the in vivo expression pattern of Axin2. Our results suggest that Axin2 participates in a negative feedback loop, which could serve to limit the duration or intensity of a Wnt-initiated signal.


2019 ◽  
Vol 19 (3) ◽  
pp. 233-246 ◽  
Author(s):  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Suhanya Veronica Prasad ◽  
Francesco Marotta ◽  
Surajit Pathak

Background:The conserved Wnt/β-catenin signaling pathway is responsible for multiple functions including regulation of stem cell pluripotency, cell migration, self-renewability and cell fate determination. This signaling pathway is of utmost importance, owing to its ability to fuel tissue repair and regeneration of stem cell activity in diverse organs. The human adult stem cells including hematopoietic cells, intestinal cells, mammary and mesenchymal cells rely on the manifold effects of Wnt pathway. The consequences of any dysfunction or manipulation in the Wnt genes or Wnt pathway components result in specific developmental defects and may even lead to cancer, as it is often implicated in stem cell control. It is absolutely essential to possess a comprehensive understanding of the inhibition and/ or stimulation of the Wnt signaling pathway which in turn is implicated in determining the fate of the stem cells.Results:In recent years, there has been considerable interest in the studies associated with the implementation of small molecule compounds in key areas of stem cell biology including regeneration differentiation, proliferation. In support of this statement, small molecules have unfolded as imperative tools to selectively activate and inhibit specific developmental signaling pathways involving the less complex mechanism of action. These compounds have been reported to modulate the core molecular mechanisms by which the stem cells regenerate and differentiate.Conclusion:This review aims to provide an overview of the prevalent trends in the small molecules based regulation of stem cell fate via targeting the Wnt signaling pathway.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Masahiko Shigemura ◽  
Emilia Lecuona ◽  
Martín Angulo ◽  
Laura A. Dada ◽  
Melanie B. Edwards ◽  
...  

AbstractCarbon dioxide (CO2) is sensed by cells and can trigger signals to modify gene expression in different tissues leading to changes in organismal functions. Despite accumulating evidence that several pathways in various organisms are responsive to CO2 elevation (hypercapnia), it has yet to be elucidated how hypercapnia activates genes and signaling pathways, or whether they interact, are integrated, or are conserved across species. Here, we performed a large-scale transcriptomic study to explore the interaction/integration/conservation of hypercapnia-induced genomic responses in mammals (mice and humans) as well as invertebrates (Caenorhabditis elegans and Drosophila melanogaster). We found that hypercapnia activated genes that regulate Wnt signaling in mouse lungs and skeletal muscles in vivo and in several cell lines of different tissue origin. Hypercapnia-responsive Wnt pathway homologues were similarly observed in secondary analysis of available transcriptomic datasets of hypercapnia in a human bronchial cell line, flies and nematodes. Our data suggest the evolutionarily conserved role of high CO2 in regulating Wnt pathway genes.


2020 ◽  
Vol 4 (1) ◽  
pp. 177-196 ◽  
Author(s):  
Rene Jackstadt ◽  
Michael Charles Hodder ◽  
Owen James Sansom

The WNT pathway is a pleiotropic signaling pathway that controls developmental processes, tissue homeostasis, and cancer. The WNT pathway is commonly mutated in many cancers, leading to widespread research into the role of WNT signaling in carcinogenesis. Understanding which cancers are reliant upon WNT activation and which components of the WNT signaling pathway are mutated is paramount to advancing therapeutic strategies. In addition, building holistic insights into the role of WNT signaling in not only tumor cells but also the tumor microenvironment is a vital area of research and may be a promising therapeutic strategy in multiple immunologically inert cancers. Novel compounds aimed at modulating the WNT signaling pathway using diverse mechanisms are currently under investigation in preclinical/early clinical studies. Here, we review how the WNT pathway is activated in multiple cancers and discuss current strategies to target aberrant WNT signaling.


2021 ◽  
pp. 153537022199408
Author(s):  
Carmen Wolke ◽  
Elmer Antileo ◽  
Uwe Lendeckel

The Wnt signaling pathway regulates physiological processes such as cell proliferation and differentiation, cell fate decisions, and stem cell maintenance and, thus, plays essential roles in embryonic development, but also in adult tissue homeostasis and repair. The Wnt signaling pathway has been associated with heart development and repair and has been shown to be crucially involved in proliferation and differentiation of progenitor cells into cardiomyocytes. The investigation of the role of the Wnt signaling pathway and the regulation of its expression/activity in atrial fibrillation has only just begun. The present minireview (I) provides original data regarding the expression of Wnt signaling components in atrial tissue of patients with atrial fibrillation or sinus rhythm and (II) summarizes the current state of knowledge of the regulation of Wnt signaling components’ expression/activity and the contribution of the various levels of the Wnt signal transduction pathway to the processes of the development, maintenance, and progression of atrial fibrillation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 544-544 ◽  
Author(s):  
Albert Gutierrez ◽  
Renee Tschumper ◽  
Jeanette Eckel-Passow ◽  
Neil E. Kay ◽  
Diane F. Jelinek

Abstract Background: B-chronic lymphocytic leukemia (B-CLL) is the most common leukemia in the Western world but its pathogenesis remains largely unknown. Our strategy was to employ gene expression profiling (GEP) to discover genetic differences between CLL B cells and blood B cells from healthy adults. Previously, we and others identified the transcription factor (TF) lymphocyte enhancer factor-1 (LEF-1) as one of several genes significantly over expressed in CLL B cells suggesting a role for the oncogenic Wnt signaling pathway. LEF-1 acts as a central mediator of Wnt signaling and is crucial for the proliferation and survival of pro-B cells during development. Recently, deregulated LEF-1 activation has been directly linked with leukemogenesis. Methodology: The goals of our study were to: validate LEF-1 over expression in CLL B cells in a new cohort of B-CLL patients and normal controls; study CLL B cell LEF-1 protein expression; and investigate CLL B cell expression levels of other genes linked to Wnt signaling. To accomplish these goals, Affymetrix U133 GEP was performed on B cells from 41 B-CLL patients who were enrolled on a trial of combined pentostatin, cyclophosphamide, and rituximab and 11 healthy adults over age 60. Only the perfect match data were utilized for all analyses; the non-background corrected perfect match data were normalized using an intensity-dependent procedure and analyses were done using the base-2 logarithm transformed normalized values. Results: GEP analysis confirmed CLL B cells expressed the LEF-1 gene at ~28-fold higher levels than normal B cells (p<.0001). These results were validated by quantitative PCR and all CLL B cells studied expressed LEF-1 mRNA. By contrast, LEF-1 mRNA expression was undetectable in blood B cells from healthy adults both before and after in vitro mitogenic stimulation suggesting aberrant LEF-1 expression in B-CLL. Moreover, LEF-1 protein was readily detected by flow cytometry in CLL B cell samples and all clonal B cells expressed a uniform level of LEF-1. Full length LEF-1 is more oncogenic and predominates in certain cancers, while a dominant negative short isoform is found at greater levels in normal lymphocytes. Of interest, western blot analysis revealed that CLL B cells predominantly expressed full length oncogenic LEF-1. Ongoing studies are focused on silencing LEF-1 expression to determine LEF-1 target genes. In this regard, IGFBP4 (IGF binding protein 4) mRNA expression levels are 19-fold higher in CLL vs control B cells (p<0.0001) and the IGFBP4 protein was recently shown to antagonize Wnt signaling. A scan of the IGFBP4 promoter element identified 3 possible LEF/TCF consensus sites. Thus, there is a possible negative feedback loop in CLL, with activation of the Wnt pathway leading to expression of a negative Wnt regulator. Finally, we queried the GEP data for evidence of differential expression of 63 other Wnt-related genes. Surprisingly, in addition to LEF1, only five genes met our selection threshold of ≥1.5 fold change in expression between CLL and control B cells and p value <.001. These genes were CSNK1D (casein kinase, delta 1; 1.9-fold higher in control vs CLL; p<0.0001); CCND2 (cyclin D2; 2.4-fold higher in CLL vs control; p<0.0001); JUN (3.2-fold higher in control vs CLL); WNT3 (6.4-fold higher in CLL vs control; p<0.0001); and TCF4 (transcription factor 4, alias ITF-2; 4-fold higher in CLL vs control; p<0.0001). To our knowledge, we are the first to report that the TCF4 (ITF-2) gene is over expressed in B-CLL. This TF is of great interest because it is a known downstream target of the Wnt/TCF pathway, is activated in human cancers with b-catenin defects, and it promotes neoplastic transformation. Using Spearman correlation analysis to explore the relationship between LEF1, TCF4, and WNT3 expression levels, we observed a marginal correlation between WNT3 expression and LEF1 (ρ=0.31; p value=0.05) and TCF4 (ρ=0.29; p value=0.07). Summary: These studies add new support for a critical role of the Wnt pathway in CLL. The WNT3 results are consistent with the literature; however, it is notable that we failed to corroborate other reports demonstrating that other Wnts and Fzd genes are differentially expressed in CLL B cells vs normal B cells. It is striking that CLL B cells over express two TFs in this pathway that have been linked with neoplastic transformation. Ongoing studies are aimed at further elucidating the roles of these genes in B-CLL.


Sign in / Sign up

Export Citation Format

Share Document