A Dictystelium mutant with defective aggregate size determination

Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2569-2578 ◽  
Author(s):  
D.A. Brock ◽  
G. Buczynski ◽  
T.P. Spann ◽  
S.A. Wood ◽  
J. Cardelli ◽  
...  

Starved Dictyostelium cells aggregate into groups of roughly 10(5) cells. We have identified a gene which, when repressed by antisense transformation or homologous recombination, causes starved cells to form large numbers of small aggregates. We call the gene smlA for small aggregates. A roughly 1.0 kb smlA mRNA is expressed in vegetative and early developing cells, and the mRNA level then decreases at about 10 hours of development. The sequence of the cDNA and the derived amino acid sequence of the SmlA protein show no significant similarity to any known sequence. There are no obvious motifs in the protein or large regions of hydrophobicity or charge. Immunofluorescence and staining of Western blots of cell fractions indicates that SmlA is a 35x10(3) Mr cytosolic protein present in all vegetative and developing cells and is absent from smlA cells. The absence of SmlA does not affect the growth rate, cell cycle, motility, differentiation, or developmental speed of cells. Synergy experiments indicate that mixing 5% smlA cells with wild-type cells will cause the wild-type cells to form smaller fruiting bodies and aggregates. Although there is no detectable SmlA protein secreted from cells, starvation medium conditioned by smlA cells will cause wild-type cells to form large numbers of small aggregates. The component in the smlA-conditioned media that affects aggregate size is a molecule with a molecular mass greater than 100x10(3) Mr that is not conditioned media factor, phosphodiesterase or the phosphodiesterase inhibitor. The data thus suggest that the cytosolic protein SmlA regulates the secretion or processing of a secreted factor that regulates aggregate size.

2013 ◽  
Vol 304 (5) ◽  
pp. F522-F532 ◽  
Author(s):  
Luca Vedovelli ◽  
John T. Rothermel ◽  
Karin E. Finberg ◽  
Carsten A. Wagner ◽  
Anie Azroyan ◽  
...  

Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1−/−) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1−/− and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915–F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1−/− mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1+/+ mice) with Atp6v1b1−/− mice to generate novel EGFP-B1−/− mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1+/+ and EGFP-B1−/− mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1−/− mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.


Blood ◽  
2012 ◽  
Vol 120 (16) ◽  
pp. 3336-3344 ◽  
Author(s):  
Anu Laitala ◽  
Ellinoora Aro ◽  
Gail Walkinshaw ◽  
Joni M. Mäki ◽  
Maarit Rossi ◽  
...  

AbstractAn endoplasmic reticulum transmembrane prolyl 4-hydroxylase (P4H-TM) is able to hydroxylate the α subunit of the hypoxia-inducible factor (HIF) in vitro and in cultured cells, but nothing is known about its roles in mammalian erythropoiesis. We studied such roles here by administering a HIF-P4H inhibitor, FG-4497, to P4h-tm−/− mice. This caused larger increases in serum Epo concentration and kidney but not liver Hif-1α and Hif-2α protein and Epo mRNA levels than in wild-type mice, while the liver Hepcidin mRNA level was lower in the P4h-tm−/− mice than in the wild-type. Similar, but not identical, differences were also seen between FG-4497–treated Hif-p4h-2 hypomorphic (Hif-p4h-2gt/gt) and Hif-p4h-3−/− mice versus wild-type mice. FG-4497 administration increased hemoglobin and hematocrit values similarly in the P4h-tm−/− and wild-type mice, but caused higher increases in both values in the Hif-p4h-2gt/gt mice and in hematocrit value in the Hif-p4h-3−/− mice than in the wild-type. Hif-p4h-2gt/gt/P4h-tm−/− double gene-modified mice nevertheless had increased hemoglobin and hematocrit values without any FG-4497 administration, although no such abnormalities were seen in the Hif-p4h-2gt/gt or P4h-tm−/− mice. Our data thus indicate that P4H-TM plays a role in the regulation of EPO production, hepcidin expression, and erythropoiesis.


Genetics ◽  
2001 ◽  
Vol 158 (3) ◽  
pp. 1027-1036 ◽  
Author(s):  
Cletus A D'Souza ◽  
Bee Na Lee ◽  
Thomas H Adams

Abstract We showed previously that a ΔfluG mutation results in a block in Aspergillus nidulans asexual sporulation and that overexpression of fluG activates sporulation in liquid-submerged culture, a condition that does not normally support sporulation of wild-type strains. Here we demonstrate that the entire N-terminal region of FluG (∼400 amino acids) can be deleted without affecting sporulation, indicating that FluG activity resides in the C-terminal half of the protein, which bears significant similarity with GSI-type glutamine synthetases. While FluG has no apparent role in glutamine biosynthesis, we propose that it has an enzymatic role in sporulation factor production. We also describe the isolation of dominant suppressors of ΔfluG(dsg) that should identify components acting downstream of FluG and thereby define the function of FluG in sporulation. The dsgA1 mutation also suppresses the developmental defects resulting from ΔflbA and dominant activating fadA mutations, which both cause constitutive induction of the mycelial proliferation pathway. However, dsgA1 does not suppress the negative influence of these mutations on production of the aflatoxin precursor, sterigmatocystin, indicating that dsgA1 is specific for asexual development. Taken together, our studies define dsgA as a novel component of the asexual sporulation pathway.


2003 ◽  
Vol 69 (5) ◽  
pp. 2521-2532 ◽  
Author(s):  
C. Lange ◽  
D. Rittmann ◽  
V. F. Wendisch ◽  
M. Bott ◽  
H. Sahm

ABSTRACT Addition of l-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 ΔilvA ΔpanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of l-isoleucine could relieve the valine effect on VAL1 whereas l-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain.


Author(s):  
Huili Zhang ◽  
Jianwei He ◽  
Yanyan Ji ◽  
Akio Kato ◽  
Youtao Song

AbstractWe cultured calnexin-disrupted and wild-type Saccharomyces cerevisiae strains under conditions of heat stress. The growth rate of the calnexin-disrupted yeast was almost the same as that of the wild-type yeast under those conditions. However, the induced mRNA level of the molecular chaperone PDI in the ER was clearly higher in calnexin-disrupted S. cerevisiae relative to the wild type at 37°C, despite being almost the same in the two strains under normal conditions. The western blotting analysis for PDI protein expression in the ER yielded results that show a parallel in their mRNA levels in the two strains. We suggest that PDI may interact with calnexin under heat stress conditions, and that the induction of PDI in the ER can recover part of the function of calnexin in calnexin-disrupted yeast, and result in the same growth rate as in wild-type yeast.


2020 ◽  
Author(s):  
Feng Chen ◽  
Xiaoyu Wei ◽  
Xiaohua Chen ◽  
Lei Xiang ◽  
Xinyao Meng ◽  
...  

Abstract Background To investigate the role and the underlying mechanism of the α7nAChR-mediated cholinergic anti-inflammatory pathway in the pathogenesis of Hirschsprung(HSCR) associated enterocolitis(HAEC). Methods Experimental group:twenty-one-day-old Ednrb-/- mice were selected (n=10), with comparable-age wild type(Ednrb+/+) mice controls (n=10). Intestinal samples were collected. The experimental colons were divided into narrow and dilated segments according to morphology changes. The control colons were divided into distal and proximal segments.Colon HE staining was used to judge HAEC.Acetylcholine levels in colon was measured using enzyme-linked immunosorbent assays. Detected phosphorylated Jak2 (p-Jak2), Jak2, phosphorylated Stat3 (p-Stat3), Stat3, phosphorylated IκBα (p-IκBα) and IκBα were studied by Western blotting; mRNA levels of Jak2, Stat3, and IκBα were detected by RT-qPCR. Results Colon HE staining indicated that HAEC mainly occured in the dilated segments of HSCR mice (Ednrb-/- mice) (EDNRB-P).Acetylcholine content in EDNRB-P was significantly lower than that in the narrow segments (EDNRB-D) (P<0.05). Western blotting showed that the Jak2, p-Jak2, Stat3 and p-Stat3 levels in EDNRB-D were significantly higher than those in EDNRB-P (P<0.05). The p-IκBα and IκBα levels in EDNRB-P were significantly higher than those in EDNRB-D(P<0.05). The mRNA levels of Jak2 and Stat3 in EDNRB-D were higher than those in EDNRB-P, but the IκBα mRNA level was significantly lower than that in EDNRB-P (P<0.05). Conclusions During HAEC, the inflammation in the dilated segment was more severe ,while in the narrow segment there was no obvious inflammatory reaction and the content of acetylcholine was higher, which was associated with the α7nAChR-mediated cholinergic anti-inflammatory pathway.


2007 ◽  
Vol 292 (3) ◽  
pp. F1028-F1034 ◽  
Author(s):  
W. Bruce Sneddon ◽  
Yanmei Yang ◽  
Jianming Ba ◽  
Lisa M. Harinstein ◽  
Peter A. Friedman

The PTH receptor (PTH1R) activates multiple signaling pathways, including extracellular signal-regulated kinases 1 and 2 (ERK1/2). The role of epidermal growth factor receptor (EGFR) transactivation in ERK1/2 activation by PTH in distal kidney cells, a primary site of PTH action, was characterized. ERK1/2 phosphorylation was stimulated by PTH and blocked by the EGFR inhibitor, AG1478. Upon PTH stimulation, metalloprotease cleavage of membrane-bound heparin-binding fragment (HB-EGF) induced EGFR transactivation of ERK. Conditioned media from PTH-treated distal kidney cells activated ERK in HEK-293 cells. AG1478 added to HEK-293 cells ablated transactivation by conditioned media. HB-EGF directly activated ERK1/2 in HEK-293 cells. Pretreatment of distal kidney cells with the metalloprotease inhibitor GM-6001 abolished transactivation of ERK1/2 by PTH. The role of the PTH1R COOH terminus in PTX-sensitive ERK1/2 activation was characterized in HEK-293 cells transfected with wild-type PTH1R, with a PTH1R mutated at its COOH terminus, or with PTH1R truncated at position 480. PTH stimulated ERK by wild-type, mutated and truncated PTH1Rs 21-, 27- and 57-fold, respectively. Thus, the PTH1R COOH terminus exerts an inhibitory effect on ERK activation. EBP50, a scaffolding protein that binds to the PDZ recognition domain of the PTH1R, impaired PTH but not isoproterenol or calcitonin-induced ERK activation. Pertussis toxin inhibited PTH-stimulated ERK1/2 by mutated and truncated PTH1Rs and abolished ERK1/2 activation by wild-type PTH1R. We conclude that ERK phosphorylation in distal kidney cells by PTH requires PTH1R activation of Gi, which leads to stimulation of metalloprotease-mediated cleavage of HB-EGF and transactivation of the EGFR and is regulated by EBP50.


Blood ◽  
1996 ◽  
Vol 88 (7) ◽  
pp. 2578-2584 ◽  
Author(s):  
K Cohen-Solal ◽  
JL Villeval ◽  
M Titeux ◽  
S Lok ◽  
W Vainchenker ◽  
...  

Mpl ligand (thrombopoietin [TPO]) is the physiological regulator of platelet production. In mice, mRNA encoding the Mpl ligand (Mpl-L) is predominantly found by Northern blot analysis in the liver and kidney. To investigate the mode of regulation of the Mpl-L gene, we have developed several experimental models of severe thrombocytopenia differing in their kinetics and an opposite model of chronic thrombocytosis. Northern analysis performed at various times after induction of a thrombocytopenic state demonstrates that, whatever the number of circulating platelets, no change in Mpl-L mRNA level occurs in liver and kidney. By ribonuclease protection assays, we analyzed the ratios between mRNAs coding for the wild-type Mpl-L form and various splice variants encoding inactive or nonsecreted Mpl-L proteins. No modification in levels of these various isoforms was detected confirming the data of a previous report. Because the highest level of Mpl-L bioactivity in sera was observed only in mice with drastically reduced numbers of both platelets and megakaryocytes, these results further suggest that not only platelets, but also megakaryocytes, must be involved in the regulation of the level of circulating Mpl-L. In addition, we show that no downregulation of wild-type Mpl-L mRNA and no change in the ratio of Mpl-L mRNA isoforms were detected in mice in which a chronic thrombocytosis was induced. Together, these different models extend and further confirm that the regulation of Mpl-L does not occur at a transcriptional level or by a modulation in the ratios of Mpl-L mRNA isoforms.


1992 ◽  
Vol 118 (5) ◽  
pp. 1223-1234 ◽  
Author(s):  
O Carpén ◽  
P Pallai ◽  
D E Staunton ◽  
T A Springer

We have studied the cytoskeletal association of intercellular adhesion molecule-1 (ICAM-1, CD54), an integral membrane protein that functions as a counterreceptor for leukocyte integrins (CD11/CD18). A linkage between ICAM-1 and cytoskeletal elements was suggested by studies showing a different ICAM-1 staining pattern for COS cells transfected with wild-type ICAM-1 or with an ICAM-1 construct that replaces the cytoplasmic and transmembrane domains of ICAM-1 with a glycophosphatidylinositol (GPI) anchor. Wild-type ICAM-1 appeared to localize most prominently in microvilli whereas GPI-ICAM-1 demonstrated a uniform cell surface distribution. Disruption of microfilaments with cytochalasin B (CCB) changed the localization of wild-type ICAM-1 but had no effect on GPI-ICAM-1. Some B-cell lines demonstrated a prominent accumulation of ICAM-1 into the uropod region whereas other cell surface proteins examined were not preferentially localized. CCB also induced redistribution of ICAM-1 in these cells. For characterization of cytoskeletal proteins interacting with ICAM-1, a 28-residue peptide that encompasses the entire predicted cytoplasmic domain (ICAM-1,478-505) was synthesized, coupled to Sepharose-4B, and used as an affinity matrix. One of the most predominant proteins eluted either with soluble ICAM-1,478-505-peptide or EDTA, was 100 kD, had a pI of 5.5, and in Western blots reacted with alpha-actinin antibodies. A direct association between alpha-actinin and ICAM-1 was demonstrated by binding of purified alpha-actinin to ICAM-1,478-505-peptide and to immunoaffinity purified ICAM-1 and by a strict colocalization of ICAM-1 with alpha-actinin, but not with the cytoskeletal proteins talin, tensin, and vinculin. The region of ICAM-1,478-505 interacting with alpha-actinin was mapped to the area close to the membrane spanning region. This region contains several positively charged residues and appears to mediate a charged interaction with alpha-actinin which is not highly dependent on the order of the residues.


Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2826-2832 ◽  
Author(s):  
JV Raelson ◽  
C Nervi ◽  
A Rosenauer ◽  
L Benedetti ◽  
Y Monczak ◽  
...  

Acute promyelocytic leukemia (APL) is characterized by the translocation, t(15;17) and the expression of a PML/RAR alpha fusion protein that is diagnostic of the disease. There is evidence that PML/RAR alpha protein acts as a dominant negative inhibitor of normal retinoid receptor function and myeloid differentiation. We now show that the PML/RAR alpha fusion product is directly downregulated in response to retinoic acid (tRA) treatment in the human APL cell line, NB4. tRA treatment induces loss of PML/RAR alpha at the protein level but not at the level of mRNA, as determined by Northern blots, by Western blots, and by ligand binding assays and in binding to RA-responsive DNA elements. We present evidence that this regulation is posttranslational. This evidence suggests that tRA induces synthesis of a protein that selectively degrades PML/RAR alpha. We further show that this loss of PML/ RAR-alpha is not limited to the unique APL cell line. NB4, because PML/RAR alpha protein is selectively downregulated by tRA when expressed in the transfected myeloid cell line U937. The loss of PML/RAR alpha may be directly linked to tRA-induced differentiation, because in a retinoid-resistant subclone of NB4, tRA does not decrease PML/RAR alpha protein expression. In NB4 cells, the specific downregulation of the fusion protein decreases the ratio of PML/RAR alpha to wild-type RAR alpha. Because the ratio of expression of PML/RAR alpha to wild-type RAR alpha and PML may be important in maintaining the dominant negative block of myelocytic differentiation, these data suggest a molecular mechanism for restoration by tRA normal myeloid differentiation in APL cells.


Sign in / Sign up

Export Citation Format

Share Document