Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans

Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3585-3597 ◽  
Author(s):  
Y. Hong ◽  
R. Roy ◽  
V. Ambros

C. elegans cki-1 encodes a member of the CIP/KIP family of cyclin-dependent kinase inhibitors, and functions to link postembryonic developmental programs to cell cycle progression. The expression pattern of cki-1::GFP suggests that cki-1 is developmentally regulated in blast cells coincident with G1, and in differentiating cells. Ectopic expression of CKI-1 can prematurely arrest cells in G1, while reducing cki-1 activity by RNA-mediated interference (RNAi) causes extra larval cell divisions, suggesting a role for cki-1 in the developmental control of G1/S. cki-1 activity is required for the suspension of cell cycling that occurs in dauer larvae and starved L1 larvae in response to environmental signals. In vulva precursor cells (VPCs), a pathway of heterochronic genes acts via cki-1 to maintain VPCs in G1 during the L2 stage.

2009 ◽  
Vol 83 (24) ◽  
pp. 12671-12679 ◽  
Author(s):  
David N. Everly ◽  
Bernardo A. Mainou ◽  
Nancy Raab-Traub

ABSTRACT LMP1 induces the phenotypic transformation of fibroblasts and affects regulators of the cell cycle during this process. LMP1 decreases expression of the cyclin-dependent kinase inhibitor p27 and increases the levels and phosphorylation of cyclin-dependent kinase 2 and the retinoblastoma protein. In the present study, the effects of LMP1 on cell cycle progression and the mechanism of p27 downregulation by LMP1 were determined. Although p27 is frequently regulated at the posttranscriptional level during cell cycle progression and in cancer, LMP1 did not decrease ectopically expressed p27. However, LMP1 did decrease p27 RNA levels and inhibited the activity of p27 promoter reporters. The LMP1-regulated promoter element was mapped to a region containing two E2F sites. Electrophoretic mobility shift assays determined that the regulated cis element bound an inhibitory E2F complex containing E2F4 and p130. These findings indicate that LMP1 decreases p27 transcription through effects on E2F family transcription factors. This property likely contributes to the ability of LMP1 to stimulate cell cycle progression.


2015 ◽  
Vol 469 (2) ◽  
pp. 289-298 ◽  
Author(s):  
David E.A. Kloet ◽  
Paulien E. Polderman ◽  
Astrid Eijkelenboom ◽  
Lydia M. Smits ◽  
Miranda H. van Triest ◽  
...  

Growth factor controlled activity of forkhead box O transcription factors results in altered gene expression, including expression of CTDSP2 (C-terminal domain small phosphatase 2). CTDSP2 can regulate cell cycle progression through Ras and the cyclin-dependent kinase inhibitor p21Cip1/Waf1.


2010 ◽  
Vol 30 (21) ◽  
pp. 5057-5070 ◽  
Author(s):  
David R. Croucher ◽  
Danny Rickwood ◽  
Carole M. Tactacan ◽  
Elizabeth A. Musgrove ◽  
Roger J. Daly

ABSTRACT The cortactin oncoprotein is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC), often due to amplification of the encoding gene (CTTN). While cortactin overexpression enhances invasive potential, recent research indicates that it also promotes cell proliferation, but how cortactin regulates the cell cycle machinery is unclear. In this article we report that stable short hairpin RNA-mediated cortactin knockdown in the 11q13-amplified cell line FaDu led to increased expression of the Cip/Kip cyclin-dependent kinase inhibitors (CDKIs) p21WAF1/Cip1, p27Kip1, and p57Kip2 and inhibition of S-phase entry. These effects were associated with increased binding of p21WAF1/Cip1 and p27Kip1 to cyclin D1- and E1-containing complexes and decreased retinoblastoma protein phosphorylation. Cortactin regulated expression of p21WAF1/Cip1 and p27Kip1 at the transcriptional and posttranscriptional levels, respectively. The direct roles of p21WAF1/Cip1, p27Kip1, and p57Kip2 downstream of cortactin were confirmed by the transient knockdown of each CDKI by specific small interfering RNAs, which led to partial rescue of cell cycle progression. Interestingly, FaDu cells with reduced cortactin levels also exhibited a significant diminution in RhoA expression and activity, together with decreased expression of Skp2, a critical component of the SCF ubiquitin ligase that targets p27Kip1 and p57Kip2 for degradation. Transient knockdown of RhoA in FaDu cells decreased expression of Skp2, enhanced the level of Cip/Kip CDKIs, and attenuated S-phase entry. These findings identify a novel mechanism for regulation of proliferation in 11q13-amplified HNSCC cells, in which overexpressed cortactin acts via RhoA to decrease expression of Cip/Kip CDKIs, and highlight Skp2 as a downstream effector for RhoA in this process.


Endocrinology ◽  
2000 ◽  
Vol 141 (12) ◽  
pp. 4552-4557 ◽  
Author(s):  
R. Tracy Ballock ◽  
Xiaolan Zhou ◽  
Lynn M. Mink ◽  
Daniel H. C. Chen ◽  
Barry C. Mita ◽  
...  

Abstract A growing body of evidence suggests that systemic hormones and peptide growth factors may exert their effects on cell growth and differentiation in part through regulation of the cell division cycle. We hypothesized that thyroid hormone regulates terminal differentiation of growth plate chondrocytes in part through controlling cell cycle progression at the G1/S restriction point. Our results support this hypothesis by demonstrating that treatment of epiphyseal chondrocytes with thyroid hormone under chemically defined conditions results in the arrest of DNA synthesis and the onset of terminal differentiation, indicating that thyroid hormone is one factor capable of regulating the transition between cell growth and differentiation in these cells. This terminal differentiation process is associated with induction of the cyclin/cyclin-dependent kinase inhibitors p21cip-1, waf-1 and p27kip1, suggesting that thyroid hormone may regulate terminal differentiation in part by arresting cell cycle progression through induction of cyclin-dependent kinase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document