scholarly journals Insulin-Like Growth Factor-1 Promotes G1/S Cell Cycle Progression through Bidirectional Regulation of Cyclins and Cyclin-Dependent Kinase Inhibitors via the Phosphatidylinositol 3-Kinase/Akt Pathway in Developing Rat Cerebral Cortex

2009 ◽  
Vol 29 (3) ◽  
pp. 775-788 ◽  
Author(s):  
G. Mairet-Coello ◽  
A. Tury ◽  
E. DiCicco-Bloom
2010 ◽  
Vol 30 (21) ◽  
pp. 5057-5070 ◽  
Author(s):  
David R. Croucher ◽  
Danny Rickwood ◽  
Carole M. Tactacan ◽  
Elizabeth A. Musgrove ◽  
Roger J. Daly

ABSTRACT The cortactin oncoprotein is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC), often due to amplification of the encoding gene (CTTN). While cortactin overexpression enhances invasive potential, recent research indicates that it also promotes cell proliferation, but how cortactin regulates the cell cycle machinery is unclear. In this article we report that stable short hairpin RNA-mediated cortactin knockdown in the 11q13-amplified cell line FaDu led to increased expression of the Cip/Kip cyclin-dependent kinase inhibitors (CDKIs) p21WAF1/Cip1, p27Kip1, and p57Kip2 and inhibition of S-phase entry. These effects were associated with increased binding of p21WAF1/Cip1 and p27Kip1 to cyclin D1- and E1-containing complexes and decreased retinoblastoma protein phosphorylation. Cortactin regulated expression of p21WAF1/Cip1 and p27Kip1 at the transcriptional and posttranscriptional levels, respectively. The direct roles of p21WAF1/Cip1, p27Kip1, and p57Kip2 downstream of cortactin were confirmed by the transient knockdown of each CDKI by specific small interfering RNAs, which led to partial rescue of cell cycle progression. Interestingly, FaDu cells with reduced cortactin levels also exhibited a significant diminution in RhoA expression and activity, together with decreased expression of Skp2, a critical component of the SCF ubiquitin ligase that targets p27Kip1 and p57Kip2 for degradation. Transient knockdown of RhoA in FaDu cells decreased expression of Skp2, enhanced the level of Cip/Kip CDKIs, and attenuated S-phase entry. These findings identify a novel mechanism for regulation of proliferation in 11q13-amplified HNSCC cells, in which overexpressed cortactin acts via RhoA to decrease expression of Cip/Kip CDKIs, and highlight Skp2 as a downstream effector for RhoA in this process.


Endocrinology ◽  
2000 ◽  
Vol 141 (12) ◽  
pp. 4552-4557 ◽  
Author(s):  
R. Tracy Ballock ◽  
Xiaolan Zhou ◽  
Lynn M. Mink ◽  
Daniel H. C. Chen ◽  
Barry C. Mita ◽  
...  

Abstract A growing body of evidence suggests that systemic hormones and peptide growth factors may exert their effects on cell growth and differentiation in part through regulation of the cell division cycle. We hypothesized that thyroid hormone regulates terminal differentiation of growth plate chondrocytes in part through controlling cell cycle progression at the G1/S restriction point. Our results support this hypothesis by demonstrating that treatment of epiphyseal chondrocytes with thyroid hormone under chemically defined conditions results in the arrest of DNA synthesis and the onset of terminal differentiation, indicating that thyroid hormone is one factor capable of regulating the transition between cell growth and differentiation in these cells. This terminal differentiation process is associated with induction of the cyclin/cyclin-dependent kinase inhibitors p21cip-1, waf-1 and p27kip1, suggesting that thyroid hormone may regulate terminal differentiation in part by arresting cell cycle progression through induction of cyclin-dependent kinase inhibitors.


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3585-3597 ◽  
Author(s):  
Y. Hong ◽  
R. Roy ◽  
V. Ambros

C. elegans cki-1 encodes a member of the CIP/KIP family of cyclin-dependent kinase inhibitors, and functions to link postembryonic developmental programs to cell cycle progression. The expression pattern of cki-1::GFP suggests that cki-1 is developmentally regulated in blast cells coincident with G1, and in differentiating cells. Ectopic expression of CKI-1 can prematurely arrest cells in G1, while reducing cki-1 activity by RNA-mediated interference (RNAi) causes extra larval cell divisions, suggesting a role for cki-1 in the developmental control of G1/S. cki-1 activity is required for the suspension of cell cycling that occurs in dauer larvae and starved L1 larvae in response to environmental signals. In vulva precursor cells (VPCs), a pathway of heterochronic genes acts via cki-1 to maintain VPCs in G1 during the L2 stage.


2000 ◽  
Vol 32 (3) ◽  
pp. 488-496 ◽  
Author(s):  
Masahito Nagaki ◽  
Akihiko Sugiyama ◽  
Takafumi Naiki ◽  
Yosuke Ohsawa ◽  
Hisataka Moriwaki

2005 ◽  
Vol 25 (11) ◽  
pp. 4335-4348 ◽  
Author(s):  
Florence Gizard ◽  
Romain Robillard ◽  
Olivier Barbier ◽  
Brigitte Quatannens ◽  
Anne Faucompré ◽  
...  

ABSTRACT The transcriptional regulating protein of 132 kDa (TReP-132) has been identified in steroidogenic tissues, where it acts as a coactivator of steroidogenic factor 1 (SF-1). We show here that TReP-132 plays a role in the control of cell proliferation. In human HeLa cells, TReP-132 knockdown by using small interfering RNA resulted in increased G1→S cell cycle progression. The growth-inhibitory effects of TReP-132 was further shown to be mediated by induction of G1 cyclin-dependent kinase inhibitors p21WAF1 (p21) and p27KIP1 (p27) expression levels. As a consequence, G1 cyclin/cyclin-dependent kinase activities and pRB phosphorylation were markedly reduced, and cell cycle progression was blocked in the G1 phase. The stimulatory effect of TReP-132 on p21 and p27 gene transcription involved interaction of TReP-132 with the transcription factor Sp1 at proximal Sp1-binding sites in their promoters. Moreover, in different breast tumor cell lines, endogenous TReP-132 expression was positively related with a lower proliferation rate. In addition, TReP-132 knockdown resulted in enhanced cell proliferation and lowered p21 and p27 mRNA levels in the steroid-responsive and nonresponsive T-47D and MDA-MB-231 cell lines, respectively. Finally, a statistic profiling of human breast tumor samples highlighted that expression of TReP-132 is correlated with p21 and p27 levels and is associated with lower tumor incidence and aggressiveness. Together, these results identify TReP-132 as a basal cell cycle regulatory protein acting, at least in part, by interacting with Sp1 to activate the p21 and p27 gene promoters.


2021 ◽  
Vol 7 (23) ◽  
pp. eabg0007
Author(s):  
Deniz Pirincci Ercan ◽  
Florine Chrétien ◽  
Probir Chakravarty ◽  
Helen R. Flynn ◽  
Ambrosius P. Snijders ◽  
...  

Two models have been put forward for cyclin-dependent kinase (Cdk) control of the cell cycle. In the qualitative model, cell cycle events are ordered by distinct substrate specificities of successive cyclin waves. Alternatively, in the quantitative model, the gradual rise of Cdk activity from G1 phase to mitosis leads to ordered substrate phosphorylation at sequential thresholds. Here, we study the relative contributions of qualitative and quantitative Cdk control in Saccharomyces cerevisiae. All S phase and mitotic cyclins can be replaced by a single mitotic cyclin, albeit at the cost of reduced fitness. A single cyclin can also replace all G1 cyclins to support ordered cell cycle progression, fulfilling key predictions of the quantitative model. However, single-cyclin cells fail to polarize or grow buds and thus cannot survive. Our results suggest that budding yeast has become dependent on G1 cyclin specificity to couple cell cycle progression to essential morphogenetic events.


Sign in / Sign up

Export Citation Format

Share Document