Reconstitution of the organizer is both sufficient and required to re-establish a fully patterned body plan in avian embryos

Development ◽  
1999 ◽  
Vol 126 (11) ◽  
pp. 2461-2473 ◽  
Author(s):  
S. Yuan ◽  
G.C. Schoenwolf

Lateral blastoderm isolates (LBIs) at the late gastrula/early neurula stage (i.e., stage 3d/4) that lack Hensen's node (organizer) and primitive streak can reconstitute a functional organizer and primitive streak within 10–12 hours in culture. We used LBIs to study the initiation and regionalization of the body plan. A complete body plan forms in each LBI by 36 hours in culture, and normal craniocaudal, dorsoventral, and mediolateral axes are re-established. Thus, reconstitution of the organizer is sufficient to re-establish a fully patterned body plan. LBIs can be modified so that reconstitution of the organizer does not occur. In such modified LBIs, tissue-type specific differentiation (with the exception of heart differentiation) and reconstitution of the body plan fail to occur. Thus, the reconstitution of the organizer is not only sufficient to re-establish a fully patterned body plan, it is also required. Finally, our results show that formation and patterning of the heart is under the control of the organizer, and that such control is exerted during the early to mid-gastrula stages (i.e., stages 2–3a), prior to formation of the fully elongated primitive streak.

Development ◽  
1998 ◽  
Vol 125 (2) ◽  
pp. 201-213 ◽  
Author(s):  
S. Yuan ◽  
G.C. Schoenwolf

We have developed a model system for analyzing reconstitution of the notochord using cultured blastoderm isolates lacking Hensen's node and the primitive streak. Despite lacking normal notochordal precursor cells, the notochord still forms in these isolates during the 36 hours in culture. Reconstitution of the notochord involves an inducer, which acts upon a responder, thereby inducing a reconstituted notochord. To better understand the mechanism of notochord reconstitution, we asked whether formation of the notochord in the model system was preceded by reconstitution of Hensen's node, the organizer of the avian neuraxis. Our results show not only that a functional organizer is reconstituted, but that this organizer is induced from the responder. First, fate mapping reveals that the responder forms a density, morphologically similar to Hensen's node, during the first 10–12 hours in culture, and that this density expresses typical markers of Hensen's node. Second, the density, when fate mapped or when labeled and transplanted in place of Hensen's node, forms typical derivatives of Hensen's node such as endoderm, notochord and the floor plate of the neural tube. Third, the density, when transplanted to an ectopic site, induces a secondary neuraxis, identical to that induced by Hensen's node. And fourth, the density acts as a suppressor of notochord reconstitution, as does Hensen's node, when transplanted to other blastoderm isolates. Our results also reveal that the medial edge of the isolate forms a reconstituted primitive streak, which gives rise to the normal derivatives of the definitive primitive streak along its rostrocaudal extent and which expresses typical streak markers. Finally, our results demonstrate that the notochordal inducer also induces the reconstituted Hensen's node and, therefore, acts like a Nieuwkoop Center. These findings increase our understanding of the mechanism of notochord reconstitution, provide new information and a novel model system for studying the induction of the organizer and reveal the potential of the epiblast to regulate its cell fate and patterns of gene expression during late gastrula/early neurula stage in higher vertebrates.


Author(s):  
Ruben Plöger ◽  
Christoph Viebahn

AbstractThe anterior-posterior axis is a central element of the body plan and, during amniote gastrulation, forms through several transient domains with specific morphogenetic activities. In the chick, experimentally proven activity of signalling molecules and transcription factors lead to the concept of a ‘global positioning system’ for initial axis formation whereas in the (mammotypical) rabbit embryo, a series of morphological or molecular domains are part of a putative ‘three-anchor-point model’. Because circular expression patterns of genes involved in axis formation exist in both amniote groups prior to, and during, gastrulation and may thus be suited to reconcile these models, the expression patterns of selected genes known in the chick, namely the ones coding for the transcription factors eomes and tbx6, the signalling molecule wnt3 and the wnt inhibitor pkdcc, were analysed in the rabbit embryonic disc using in situ hybridisation and placing emphasis on their germ layer location. Peripheral wnt3 and eomes expression in all layers is found initially to be complementary to central pkdcc expression in the hypoblast during early axis formation. Pkdcc then appears — together with a posterior-anterior gradient in wnt3 and eomes domains — in the epiblast posteriorly before the emerging primitive streak is marked by pkdcc and tbx6 at its anterior and posterior extremities, respectively. Conserved circular expression patterns deduced from some of this data may point to shared mechanisms in amniote axis formation while the reshaping of localised gene expression patterns is discussed as part of the ‘three-anchor-point model’ for establishing the mammalian body plan.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 774
Author(s):  
Max Langer ◽  
Thomas Speck ◽  
Olga Speck

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.


2018 ◽  
Vol 15 (143) ◽  
pp. 20170937 ◽  
Author(s):  
Nick Cheney ◽  
Josh Bongard ◽  
Vytas SunSpiral ◽  
Hod Lipson

Evolution sculpts both the body plans and nervous systems of agents together over time. By contrast, in artificial intelligence and robotics, a robot's body plan is usually designed by hand, and control policies are then optimized for that fixed design. The task of simultaneously co-optimizing the morphology and controller of an embodied robot has remained a challenge. In psychology, the theory of embodied cognition posits that behaviour arises from a close coupling between body plan and sensorimotor control, which suggests why co-optimizing these two subsystems is so difficult: most evolutionary changes to morphology tend to adversely impact sensorimotor control, leading to an overall decrease in behavioural performance. Here, we further examine this hypothesis and demonstrate a technique for ‘morphological innovation protection’, which temporarily reduces selection pressure on recently morphologically changed individuals, thus enabling evolution some time to ‘readapt’ to the new morphology with subsequent control policy mutations. We show the potential for this method to avoid local optima and converge to similar highly fit morphologies across widely varying initial conditions, while sustaining fitness improvements further into optimization. While this technique is admittedly only the first of many steps that must be taken to achieve scalable optimization of embodied machines, we hope that theoretical insight into the cause of evolutionary stagnation in current methods will help to enable the automation of robot design and behavioural training—while simultaneously providing a test bed to investigate the theory of embodied cognition.


Development ◽  
2002 ◽  
Vol 129 (5) ◽  
pp. 1107-1117 ◽  
Author(s):  
Caroline Jouve ◽  
Tadahiro Iimura ◽  
Olivier Pourquie

Vertebrate somitogenesis is associated with a molecular oscillator, the segmentation clock, which is defined by the periodic expression of genes related to the Notch pathway such as hairy1 and hairy2 or lunatic fringe (referred to as the cyclic genes) in the presomitic mesoderm (PSM). Whereas earlier studies describing the periodic expression of these genes have essentially focussed on later stages of somitogenesis, we have analysed the onset of the dynamic expression of these genes during chick gastrulation until formation of the first somite. We observed that the onset of the dynamic expression of the cyclic genes in chick correlated with ingression of the paraxial mesoderm territory from the epiblast into the primitive streak. Production of the paraxial mesoderm from the primitive streak is a continuous process starting with head mesoderm formation, while the streak is still extending rostrally, followed by somitic mesoderm production when the streak begins its regression. We show that head mesoderm formation is associated with only two pulses of cyclic gene expression. Because such pulses are associated with segment production at the body level, it suggests the existence of, at most, two segments in the head mesoderm. This is in marked contrast to classical models of head segmentation that propose the existence of more than five segments. Furthermore, oscillations of the cyclic genes are seen in the rostral primitive streak, which contains stem cells from which the entire paraxial mesoderm originates. This indicates that the number of oscillations experienced by somitic cells is correlated with their position along the AP axis.


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4611-4617 ◽  
Author(s):  
I. Olivera-Martinez ◽  
M. Coltey ◽  
D. Dhouailly ◽  
O. Pourquie

Somites are transient mesodermal structures giving rise to all skeletal muscles of the body, the axial skeleton and the dermis of the back. Somites arise from successive segmentation of the presomitic mesoderm (PSM). They appear first as epithelial spheres that rapidly differentiate into a ventral mesenchyme, the sclerotome, and a dorsal epithelial dermomyotome. The sclerotome gives rise to vertebrae and ribs while the dermomyotome is the source of all skeletal muscles and the dorsal dermis. Quail-chick fate mapping and diI-labeling experiments have demonstrated that the epithelial somite can be further subdivided into a medial and a lateral moiety. These two subdomains are derived from different regions of the primitive streak and give rise to different sets of muscles. The lateral somitic cells migrate to form the musculature of the limbs and body wall, known as the hypaxial muscles, while the medial somite gives rise to the vertebrae and the associated epaxial muscles. The respective contribution of the medial and lateral somitic compartments to the other somitic derivatives, namely the dermis and the ribs has not been addressed and therefore remains unknown. We have created quail-chick chimeras of either the medial or lateral part of the PSM to examine the origin of the dorsal dermis and the ribs. We demonstrate that the whole dorsal dermis and the proximal ribs exclusively originates from the medial somitic compartment, whereas the distal ribs derive from the lateral compartment.


2020 ◽  
Author(s):  
Ali Hashmi ◽  
Sham Tlili ◽  
Pierre Perrin ◽  
Alfonso Martinez-Arias ◽  
Pierre-François Lenne

AbstractShaping the animal body plan is a complex process that involves the spatial organization and patterning of different cell layers. Recent advances in live imaging have started to unravel the cellular choreography underlying this process in mammals, however, the sequence of events transforming an unpatterned cell ensemble into structured territories is largely unknown. Here, using 3D aggregates of mouse embryonic stem cells, we study the formation of one of the three germ layers, the endoderm. We show that the endoderm is generated from an epiblast-like state by a three-step mechanism: a release of islands of Ecadherin expressing cells, their flow toward the aggregate tip, and their segregation. Unlike the prevailing view, this mechanism does not require epithelial-to-mesenchymal transitions and vice-versa but rather a fragmentation, which is mediated by Wnt/β-catenin, and a sorting process. Our data emphasize the role of signaling and cell flows in the establishment of the body plan.


2021 ◽  
Vol 9 ◽  
Author(s):  
R. Brian Langerhans ◽  
Eduardo Rosa-Molinar

Major evolutionary innovations can greatly influence subsequent evolution. While many major transitions occurred in the deep past, male live-bearing fishes (family Poeciliidae) more recently evolved a novel body plan. This group possesses a three-region axial skeleton, with one region—the ano-urogenital region—representing a unique body region accommodating male genitalic structures (gonopodial complex). Here we evaluate several hypotheses for the evolution of diversity in this region and examine its role in the evolution of male body shape. Examining Gambusia fishes, we tested a priori predictions for (1) joint influence of gonopodial-complex traits on mating performance, (2) correlated evolution of gonopodial-complex traits at macro- and microevolutionary scales, and (3) predator-driven evolution of gonopodial-complex traits in a post-Pleistocene radiation of Bahamas mosquitofish. We found the length of the sperm-transfer organ (gonopodium) and its placement along the body (gonopodial anterior transposition) jointly influenced mating success, with correlational selection favoring particular trait combinations. Despite these two traits functionally interacting during mating, we found no evidence for their correlated evolution at macro- or microevolutionary scales. In contrast, we did uncover correlated evolution of modified vertebral hemal spines (part of the novel body region) and gonopodial anterior transposition at both evolutionary scales, matching predictions of developmental connections between these components. Developmental linkages in the ano-urogenital region apparently play key roles in evolutionary trajectories, but multiple selective agents likely act on gonopodium length and cause less predictable evolution. Within Bahamas mosquitofish, evolution of hemal-spine morphology, and gonopodial anterior transposition across predation regimes was quite predictable, with populations evolving under high predation risk showing more modified hemal spines with greater modifications and a more anteriorly positioned gonopodium. These changes in the ano-urogenital vertebral region have facilitated adaptive divergence in swimming abilities and body shape between predation regimes. Gonopodium surface area, but not length, evolved as predicted in Bahamas mosquitofish, consistent with a previously suggested tradeoff between natural and sexual selection on gonopodium size. These results provide insight into how restructured body plans offer novel evolutionary solutions. Here, a novel body region—originally evolved to aid sperm transfer—was apparently co-opted to alter whole-organism performance, facilitating phenotypic diversification.


Development ◽  
1999 ◽  
Vol 126 (6) ◽  
pp. 1211-1223 ◽  
Author(s):  
T.P. Yamaguchi ◽  
A. Bradley ◽  
A.P. McMahon ◽  
S. Jones

Morphogenesis depends on the precise control of basic cellular processes such as cell proliferation and differentiation. Wnt5a may regulate these processes since it is expressed in a gradient at the caudal end of the growing embryo during gastrulation, and later in the distal-most aspect of several structures that extend from the body. A loss-of-function mutation of Wnt5a leads to an inability to extend the A-P axis due to a progressive reduction in the size of caudal structures. In the limbs, truncation of the proximal skeleton and absence of distal digits correlates with reduced proliferation of putative progenitor cells within the progress zone. However, expression of progress zone markers, and several genes implicated in distal outgrowth and patterning including Distalless, Hoxd and Fgf family members was not altered. Taken together with the outgrowth defects observed in the developing face, ears and genitals, our data indicates that Wnt5a regulates a pathway common to many structures whose development requires extension from the primary body axis. The reduced number of proliferating cells in both the progress zone and the primitive streak mesoderm suggests that one function of Wnt5a is to regulate the proliferation of progenitor cells.


Sign in / Sign up

Export Citation Format

Share Document