scholarly journals Scalable co-optimization of morphology and control in embodied machines

2018 ◽  
Vol 15 (143) ◽  
pp. 20170937 ◽  
Author(s):  
Nick Cheney ◽  
Josh Bongard ◽  
Vytas SunSpiral ◽  
Hod Lipson

Evolution sculpts both the body plans and nervous systems of agents together over time. By contrast, in artificial intelligence and robotics, a robot's body plan is usually designed by hand, and control policies are then optimized for that fixed design. The task of simultaneously co-optimizing the morphology and controller of an embodied robot has remained a challenge. In psychology, the theory of embodied cognition posits that behaviour arises from a close coupling between body plan and sensorimotor control, which suggests why co-optimizing these two subsystems is so difficult: most evolutionary changes to morphology tend to adversely impact sensorimotor control, leading to an overall decrease in behavioural performance. Here, we further examine this hypothesis and demonstrate a technique for ‘morphological innovation protection’, which temporarily reduces selection pressure on recently morphologically changed individuals, thus enabling evolution some time to ‘readapt’ to the new morphology with subsequent control policy mutations. We show the potential for this method to avoid local optima and converge to similar highly fit morphologies across widely varying initial conditions, while sustaining fitness improvements further into optimization. While this technique is admittedly only the first of many steps that must be taken to achieve scalable optimization of embodied machines, we hope that theoretical insight into the cause of evolutionary stagnation in current methods will help to enable the automation of robot design and behavioural training—while simultaneously providing a test bed to investigate the theory of embodied cognition.

2021 ◽  
Author(s):  
Lital Shani-Zerbib ◽  
Liora Garion ◽  
Yonit Maroudas-Sacks ◽  
Erez Braun ◽  
Kinneret Keren

The emergence and stabilization of a body axis is a major step in animal morphogenesis, determining the symmetry of the body plan as well as its polarity. To advance our understanding of the emergence of body-axis polarity we study regenerating Hydra. Axis polarity is strongly memorized in Hydra regeneration even in small tissue segments. What type of processes confer this memory? To gain insight into the emerging polarity, we utilize frustrating initial conditions by studying regenerating tissue strips which fold into hollow spheroids by adhering their distal ends, of opposite original polarities. Despite the convoluted folding process and the tissue rearrangements during regeneration, these tissue strips develop a new organizer in a reproducible location preserving the original polarity and yielding an ordered body plan. These observations suggest that the integration of mechanical and biochemical processes supported by their mutual feedback attracts the tissue dynamics towards a well-defined developmental trajectory biased by weak inherited cues from the parent animal. Hydra thus provide an example of dynamic canalization in which the dynamic rules themselves are inherited, in contrast to the classical picture where a detailed developmental trajectory is pre-determined.


2017 ◽  
Vol 3 (1) ◽  
pp. 76
Author(s):  
Siti Asiyah ◽  
Dwi Estuning Rahayu ◽  
Wiranti Dwi Novita Isnaeni

The needed of Iron Tablet in pregnancy was increase than mother who not pregnant.  That  cause of  high metabolism at the pregnancy for formed of  fetal organ and energy. One of effort for prevent anemia in mother pregnant with giving the Iron tablet and vitamin c. The reason of  this research in 4 June – 11 July 2014 is for compare the effect of  iron tablet suplementation with and without vitamin C toward Hemoglobin level in mother pregnant With Gestational Age Of 16-32 Weeks In Desa Keniten Kecamatan Mojo Kabupaten Kediri. This research method using comparative analytical.  Research design type of Quasy Eksperiment that have treatment group and control group. Treatment group will giving by Iron tablet and 100 mg vitamin C, and control group just giving by iron tablet during 21 days. Population in this research are all of mother pregnant with Gestational Age Of 16-32 Weeks with Sampling technique is  cluster random sampling is 29 mother pregnant. Comparison analysis of  iron tablet suplementation effect with and without vitamin C toward Hemoglobin level in mother pregnant With Gestational Age Of 16-32 Weeks, data analysis using Mann Whitney U-test and the calculated U value (44,5) less than U-table (51). So there was difference of iron tablet suplementation effect with and without vitamin C toward Hemoglobin level in mother pregnant With Gestational Age Of 16-32 Weeks Therefore, the addition of vitamin C on iron intake is needed to increase the uptake of iron tablets. When the amount of iron uptake increases, the reserves of iron in the body will also increase, so as to prevent anemia in pregnant women; Keywords : Iron Tablet (Fe), Vitamin C, Hemoglobin level, Mother Pregnant


Author(s):  
Pavani C H

Hyperlipidemia is the immediate results of the excessive fat intake in food. This results in the elevated levels of cholesterol and triglycerides in the blood. This leads to heart conditions like CAD, hypertension, congestive heart failure as risk factors which can be lethal. There are many drugs to treat and control the lipids levels in the body. These drugs are either designed to prevent LDL accumulation and VLDL synthesis. Some drugs also lower the elevated levels of saturated lipids in the body. But many drugs are known to cause side effects and adverse effects; therefore, alternatives to the drugs are the subjects for current investigations. Herbs and medicinal plants are used as treatment sources for many years. They have been used in the Indian medical systems like Ayurveda, Siddha etc. As the application of herbs in the treatment is growing, there is an urgent need for the establishment of Pharmacological reasoning and standardization of the activity of the medicinal plants. Chloris paraguaiensis Steud. is Poyaceae member that is called locally as Uppugaddi. Traditionally it is used to treat Rheumatism, Diabetes, fever and diarrhoea. The chemical constituents are known to have anti-oxidant properties and most of the anti-oxidants have anti-hyperlipidemic activity too. Since the plant has abundant flavonoid and phenol content, the current research focusses on the investigation of the anti-hyperlipidemic activity of the plant Chloris extracts. Extracts of Chloris at 200mg/kg showed a comparably similar anti hyperlipidemia activity to that of the standard drug. The extracts showed a dose based increase in the activity at 100 and 200mg/kg body weight.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 716-722
Author(s):  
Sneha Dhakite ◽  
Sadhana Misar Wajpeyi

The “Coronavirus disease 19 (COVID-19)” is caused by “Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)”, a newly discovered member of the Coronaviridae family of viruses which is a highly communicable. There is no effective medical treatment till date for Coronavirus disease hence prevention is the best way to keep disease away. Rasayana proved to be highly efficacious and cost effective for the Prevention and Control of viral infections when vaccines and standard therapies are lacking. Rasayana Chikitsa is one of the eight branches of Ashtanga Ayurveda which helps to maintain healthy life style. Rasayana improves immunity and performs many vital functions of human body. Vyadhikshamatva that is immune mechanism of the body is involved in Prevention of the occurrence of a new disease and it also decreases the virulence and progression of an existing disease. In COVID-19 the Respiratory system mainly get affected which is evident from its symptoms like cold, cough and breathlessness. Here the drugs help in enhancing immune system and strengthening functions of Respiratory system can be useful. For this purpose, the Rasayana like Chyavanprasha, Agastya Haritaki, Pippali Rasayana, Guduchi, Yashtimadhu, Haridra, Ashwagandha, Tulsi are used. Rasayana working on Respiratory system are best for Prevention of Coronavirus and boosting immune system. Rasayana Chikitsa can be effective in the Prevention as well as reducing symptoms of COVID-19.


Author(s):  
Ruben Plöger ◽  
Christoph Viebahn

AbstractThe anterior-posterior axis is a central element of the body plan and, during amniote gastrulation, forms through several transient domains with specific morphogenetic activities. In the chick, experimentally proven activity of signalling molecules and transcription factors lead to the concept of a ‘global positioning system’ for initial axis formation whereas in the (mammotypical) rabbit embryo, a series of morphological or molecular domains are part of a putative ‘three-anchor-point model’. Because circular expression patterns of genes involved in axis formation exist in both amniote groups prior to, and during, gastrulation and may thus be suited to reconcile these models, the expression patterns of selected genes known in the chick, namely the ones coding for the transcription factors eomes and tbx6, the signalling molecule wnt3 and the wnt inhibitor pkdcc, were analysed in the rabbit embryonic disc using in situ hybridisation and placing emphasis on their germ layer location. Peripheral wnt3 and eomes expression in all layers is found initially to be complementary to central pkdcc expression in the hypoblast during early axis formation. Pkdcc then appears — together with a posterior-anterior gradient in wnt3 and eomes domains — in the epiblast posteriorly before the emerging primitive streak is marked by pkdcc and tbx6 at its anterior and posterior extremities, respectively. Conserved circular expression patterns deduced from some of this data may point to shared mechanisms in amniote axis formation while the reshaping of localised gene expression patterns is discussed as part of the ‘three-anchor-point model’ for establishing the mammalian body plan.


2021 ◽  
pp. 105971232199468
Author(s):  
Paolo Pagliuca ◽  
Stefano Nolfi

We introduce a method that permits to co-evolve the body and the control properties of robots. It can be used to adapt the morphological traits of robots with a hand-designed morphological bauplan or to evolve the morphological bauplan as well. Our results indicate that robots with co-adapted body and control traits outperform robots with fixed hand-designed morphologies. Interestingly, the advantage is not due to the selection of better morphologies but rather to the mutual scaffolding process that results from the possibility to co-adapt the morphological traits to the control traits and vice versa. Our results also demonstrate that morphological variations do not necessarily have destructive effects on robots’ skills.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 774
Author(s):  
Max Langer ◽  
Thomas Speck ◽  
Olga Speck

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.


1983 ◽  
Vol 76 (10) ◽  
pp. 833-840 ◽  
Author(s):  
A K House ◽  
M A L Maley

Two cohorts of rats, 240 with colon cancer and 150 controls, were assessed clinically and immunologically for their response to tumour and its management which was either by surgical excision alone or by surgical excision combined with either adjuvant chemotherapy or immunotherapy. The histology and invasion characteristics were observed for similarity with those of human lesions. Metastases were found in liver, lymph nodes, the peritoneum or lungs in 27% of animals during follow up. Significantly fewer adjuvant-treated rats had metastases than those receiving surgery alone ( P < 0.05), and less total tumour weight was found in the adjuvant-treated rats at four ( P < 0.03) and six ( P < 0.001) weeks postoperatively. Animals in the adjuvant immunotherapy group survived longer than in either other group ( P < 0.001). The crude parameters of host response to tumour, body, spleen and mesenteric lymph node weight were recorded and the latter two indexed to body weight. The body weight of tumour and control rats increased significantly with time ( P < 0.04). The spleen and mesenteric node indices were significantly ( P < 0.04) greater in tumour than control rats and were varied by recurrent tumour growth and by the adjuvant treatment administered postoperatively.


1969 ◽  
Vol 62 (2) ◽  
pp. 367-384 ◽  
Author(s):  
A. M. Sackler ◽  
A. S. Weltman ◽  
R. Schwartz ◽  
P. Steinglass

ABSTRACT This report was designed to determine combined effects of maternal endocrine imbalances and abnormal behaviour due to prolonged isolation stress of female mice on the behaviour, developmental growth rate and endocrine function of their offspring. Sixty female albino mice averaging 19 g were divided equally into isolated and control groups. The isolated females were housed singly; control females were maintained in groups of 2 mice per cage. After observation of behavioural and physiological effects characteristic of isolation stress in the test mice, all isolated and control mice were mated after a 6½ month experimental, isolation period. No differences were observed in fertility and fecundity of the two groups of mothers. Analyses of developmental growth rates of the litters of the isolated versus control mothers showed significantly lower body weights in the test offspring at 3 and 4 weeks of age. The body weights of the female offspring remained significantly lower from the 4th to 11th weeks. The effects on the body weights of the male offspring declined and were no longer statistically significant at the 5th to 11 weeks. Locomotor activity at 4½ and 8 weeks of age was markedly or significantly higher in the male and female mice from isolated mothers. Tail-blood samples taken prior to autopsy at 5 and 11 weeks of age revealed significant decreases in the total leukocyte and eosinophil counts of both sexes. At the two ages, the absolute and relative spleen and thymus weights of the male and female offspring were markedly and/or significantly lower than the values observed in counterpart young from control females. Significant decreases were also observed in the absolute gonadal organ weights of both sexes at 11 weeks of age. The various data indicated inhibited growth rates, heightened locomotor activity and evasiveness, as well as evidence of increased adrenocortical function in the offspring from test mothers. The gonadal weight decreases suggested retarded gonadal development. Further studies using split-litter techniques are required to differentiate the effects of prenatal endocrine imbalances versus postnatal maternal influence (i. e., nursing care) on the offspring.


Sign in / Sign up

Export Citation Format

Share Document