TONDU (TDU), a novel human protein related to the product of vestigial (vg) gene of Drosophila melanogaster interacts with vertebrate TEF factors and substitutes for Vg function in wing formation

Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4807-4816 ◽  
Author(s):  
P. Vaudin ◽  
R. Delanoue ◽  
I. Davidson ◽  
J. Silber ◽  
A. Zider

The mammalian TEF and the Drosophila scalloped genes belong to a conserved family of transcriptional factors that possesses a TEA/ATTS DNA-binding domain. Transcriptional activation by these proteins likely requires interactions with specific coactivators. In Drosophila, Scalloped (Sd) interacts with Vestigial (Vg) to form a complex, which binds DNA through the Sd TEA/ATTS domain. The Sd-Vg heterodimer is a key regulator of wing development, which directly controls several target genes and is able to induce wing outgrowth when ectopically expressed. Here we show that Vg contains two distinct transcriptional activation domains, suggesting that the function of Vg is to mediate transcriptional activation by Sd. By expressing a chimeric GAL4-Sd protein in Drosophila, we found that the transcriptional activity of the Vg-Sd heterodimer is negatively regulated at the AP and DV boundary of the wing disc. We also identify a novel human protein, TONDU, which contains a short domain homologous to the domain of Vg required for interaction with Sd. We show that TONDU specifically interacts with a domain conserved in all the mammalian TEF factors. Expression of TDU in Drosophila by means of the UAS-GAL4 system shows that this human protein can substitute for Vg in wing formation. We propose that TDU is a specific coactivator for the mammalian TEFs.

1995 ◽  
Vol 15 (6) ◽  
pp. 3354-3362 ◽  
Author(s):  
M Green ◽  
T J Schuetz ◽  
E K Sullivan ◽  
R E Kingston

Human heat shock factor 1 (HSF1) stimulates transcription from heat shock protein genes following stress. We have used chimeric proteins containing the GAL4 DNA binding domain to identify the transcriptional activation domains of HSF1 and a separate domain that is capable of regulating activation domain function. This regulatory domain conferred heat shock inducibility to chimeric proteins containing the activation domains. The regulatory domain is located between the transcriptional activation domains and the DNA binding domain of HSF1 and is conserved between mammalian and chicken HSF1 but is not found in HSF2 or HSF3. The regulatory domain was found to be functionally homologous between chicken and human HSF1. This domain does not affect DNA binding by the chimeric proteins and does not contain any of the sequences previously postulated to regulate DNA binding of HSF1. Thus, we suggest that activation of HSF1 by stress in humans is controlled by two regulatory mechanisms that separately confer heat shock-induced DNA binding and transcriptional stimulation.


2005 ◽  
Vol 25 (16) ◽  
pp. 7375-7385 ◽  
Author(s):  
Brandon S. J. Davies ◽  
Helen S. Wang ◽  
Jasper Rine

ABSTRACT Genes encoding biosynthetic enzymes that make ergosterol, the major fungal membrane sterol, are regulated, in part, at the transcriptional level. Two transcription factors, Upc2p and Ecm22p, bind to the promoters of most ergosterol biosynthetic (ERG) genes, including ERG2 and ERG3, and activate these genes upon sterol depletion. We have identified the transcriptional activation domains of Upc2p and Ecm22p and found that UPC2-1, a mutation that allows cells to take up sterols aerobically, increased the potency of the activation domain. The equivalent mutation in ECM22 also greatly enhanced transcriptional activation. The C-terminal regions of Upc2p and Ecm22p, which contained activation domains, also conferred regulation in response to sterol levels. Hence, the activation and regulatory domains of these proteins overlapped. However, the two proteins differed markedly in how they respond to an increased need for sterols. Upon inducing conditions, Upc2p levels increased, and chromatin immunoprecipitation experiments revealed more Upc2p at promoters even when the activation/regulatory domains were tethered to a different DNA-binding domain. However, induction resulted in decreased Ecm22p levels and a corresponding decrease in the amount of Ecm22p bound to promoters. Thus, these two activators differ in their contributions to the regulation of their targets.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Jinhe Jiang ◽  
Yumei Sun ◽  
Rong Xiao ◽  
Kai Wai ◽  
Muhammad Jamil Ahmad ◽  
...  

Abstract Clustered Regularly Interspaced Short Palindromic Repeat activation-synergistic activation mediator system (CRISPRa-SAM) has been efficiently used to up-regulate the targeted genes in human and mouse. But it is not known whether the CRISPRa-SAM system can be used against porcine disease because its two important transcriptional activation domains (P65 and heat shock transcription factor 1 (HSF1)) are from mouse and human, respectively. Pig is one of the most important meat sources, porcine viral infectious diseases cause massive economic losses to the swine industry and threaten the public health. We aimed to investigate whether the CRISPRa-SAM system could increase porcine antiviral activity by mediating two pig-specific target genes (Mx2 and β1,4 N-acetylgalactosaminyltransferase (B4galnt2)). First, we constructed PK-15 and IPEC-J2 cell lines expressing nuclease-deficient Cas9 (dCas9)-vp64 and MS2-P65-HSF1 stably. Next, in these two cell models, we activated Mx2 and B4galnt2 expression through CRISPRa-SAM system. Antiviral activity to PRV or H9N2 was improved in PK-15 cells where Mx2 or B4galnt2 was activated. Altogether, our results demonstrated the potential of CRISPRa-SAM system as a powerful tool for activating pig genes and improving porcine antiviral activity.


1998 ◽  
Vol 18 (11) ◽  
pp. 6201-6212 ◽  
Author(s):  
Maria Alessandra Viganò ◽  
Giuliana Di Rocco ◽  
Vincenzo Zappavigna ◽  
Fulvio Mavilio

ABSTRACT Hox proteins control developmental patterns and cell differentiation in vertebrates by acting as positive or negative regulators of still unidentified downstream target genes. The homeodomain and other small accessory sequences encode the DNA-protein and protein-protein interaction functions which ultimately dictate target recognition and functional specificity in vivo. The effector domains responsible for either positive or negative interactions with the cell transcriptional machinery are unknown for most Hox proteins, largely due to a lack of physiological targets on which to carry out functional analysis. We report the identification of the transcriptional activation domains of three human Hox proteins, HOXB1, HOXB3, and HOXD9, which interact in vivo with the autoregulatory and cross-regulatory enhancers of the murine Hoxb-1 and human HOXD9 genes. Activation domains have been defined both in a homologous context, i.e., within a HOX protein binding as a monomer or as a HOX-PBX heterodimer to the specific target, and in a heterologous context, after translocation to the yeast Gal4 DNA-binding domain. Transfection analysis indicates that activation domains can be identified in different regions of the three HOX proteins depending on the context in which they interact with the DNA target. These results suggest that Hox proteins may be multifunctional transcriptional regulators, interacting with different cofactors and/or components of the transcriptional machinery depending on the structure of their target regulatory elements.


2004 ◽  
Vol 3 (2) ◽  
pp. 339-347 ◽  
Author(s):  
John L. Stebbins ◽  
Steven J. Triezenberg

ABSTRACT The Hap4 protein of the budding yeast Saccharomyces cerevisiae activates the transcription of genes that are required for growth on nonfermentable carbon sources. Previous reports suggested the presence of a transcriptional activation domain within the carboxyl-terminal half of Hap4 that can function in the absence of Gcn5, a transcriptional coactivator protein and histone acetyltransferase. The boundaries of this activation domain were further defined to a region encompassing amino acids 359 to 476. Within this region, several clusters of hydrophobic amino acids are critical for transcriptional activity. This activity does not require GCN5 or two other components of the SAGA coactivator complex, SPT3 and SPT8, but it does require SPT7 and SPT20. Contrary to previous reports, a Hap4 fragment comprising amino acids 1 to 330 can support the growth of yeast on lactate medium, and when tethered to lexA, can activate a reporter gene with upstream lexA binding sites, demonstrating the presence of a second transcriptional activation domain. In contrast to the C-terminal activation domain, the transcriptional activity of this N-terminal region depends on GCN5. We conclude that the yeast Hap4 protein has at least two transcriptional activation domains with strikingly different levels of dependence on specific transcriptional coactivator proteins.


1996 ◽  
Vol 16 (3) ◽  
pp. 839-846 ◽  
Author(s):  
E M Newton ◽  
U Knauf ◽  
M Green ◽  
R E Kingston

Heat shock factor (HSF) activates transcription in response to cellular stress. Human HSF1 has a central regulatory domain which can repress the activity of its activation domains at the control temperature and render them heat shock inducible. To determine whether the regulatory domain works in tandem with specific features of the HSF1 transcriptional activation domains, we first used deletion and point mutagenesis to define these activation domains. One of the activation domains can be reduced to just 20 amino acids. A GAL4 fusion protein containing the HSF 1 regulatory domain and this 20-amino-acid activation domain is repressed at the control temperature but potently activates transcription in response to heat shock. No specific amino acids in this activation domain are required for response to the regulatory domain; in particular, none of the potentially phosphorylated serine and threonine residues are required for heat induction, implying that heat-induced phosphorylation of the transcriptional activation domains is not required for induction. The regulatory domain is able to confer heat responsiveness to an otherwise completely heterologous chimeric activator that contains a portion of the VP16 activation domain, suggesting that the regulatory domain can sense heat in the absence of other portions of HSF1.


1990 ◽  
Vol 10 (10) ◽  
pp. 5532-5535 ◽  
Author(s):  
C Abate ◽  
D Luk ◽  
E Gagne ◽  
R G Roeder ◽  
T Curran

The products of c-fos and c-jun (Fos and Jun) function in gene regulation by interacting with the AP-1 binding site. Here we have examined the contribution of Fos and Jun toward transcriptional activity by using Fos and Jun polypeptides purified from Escherichia coli. Fos contained a transcriptional activation domain as well as a region which exerted a negative influence on transcriptional activity in vitro. Moreover, distinct activation domains in both Fos and Jun functioned cooperatively in transcriptional stimulation. Thus, regulation of gene expression by Fos and Jun results from an integration of several functional domains in a bimolecular complex.


1994 ◽  
Vol 14 (6) ◽  
pp. 3927-3937
Author(s):  
M Kretzschmar ◽  
G Stelzer ◽  
R G Roeder ◽  
M Meisterernst

We have isolated from a crude Hela cell cofactor fraction (USA) a novel positive cofactor that cooperates with the general transcription machinery to effect efficient stimulation of transcription by GAL4-AH, a derivative of the Saccharomyces cerevisiae regulatory factor GAL4. PC2 was shown to be a 500-kDa protein complex and to be functionally and biochemically distinct from native TFIID and previously identified cofactors. In the presence of native TFIID and other general factors, PC2 was necessary and sufficient for activation by GAL4-AH. Cofactor function was specific for transcriptional activation domains of GAL4-AH. The repressor histone H1 further potentiated but was not required for activation of transcription by GAL4-AH. On the basis of the observation that PC2 exerts entirely positive effects on transcription, we propose a model in which PC2 increases the activity of the preinitiation complex in the presence of an activator, thereby establishing a specific pathway during activation of RNA polymerase II.


1994 ◽  
Vol 14 (9) ◽  
pp. 6056-6067
Author(s):  
M Tanaka ◽  
W Herr

The POU domain activator Oct-2 contains an N-terminal glutamine-rich transcriptional activation domain. An 18-amino-acid segment (Q18III) from this region reconstituted a fully functional activation domain when tandemly reiterated and fused to either the Oct-2 or GAL4 DNA-binding domain. A minimal transcriptional activation domain likely requires three tandem Q18III segments, because one or two tandem Q18III segments displayed little activity, whereas three to five tandem segments were active and displayed increasing activity with increasing copy number. As with natural Oct-2 activation domains, in our assay a reiterated activation domain required a second homologous or heterologous activation domain to stimulate transcription effectively when fused to the Oct-2 POU domain. These results suggest that there are different levels of synergy within and among activation domains. Analysis of reiterated activation domains containing mutated Q18III segments revealed that leucines and glutamines, but not serines or threonines, are critical for activity in vivo. Curiously, several reiterated activation domains that were inactive in vivo were active in vitro, suggesting that there are significant functional differences in our in vivo and in vitro assays. Reiteration of a second 18-amino-acid segment from the Oct-2 glutamine-rich activation domain (Q18II) was also active, but its activity was DNA-binding domain specific, because it was active when fused to the GAL4 than to the Oct-2 DNA-binding domain. The ability of separate short peptide segments derived from a single transcriptional activation domain to activate transcription after tandem reiteration emphasizes the flexible and modular nature of a transcriptional activation domain.


Sign in / Sign up

Export Citation Format

Share Document