The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye

Development ◽  
2000 ◽  
Vol 127 (9) ◽  
pp. 1911-1919 ◽  
Author(s):  
S. Winkler ◽  
F. Loosli ◽  
T. Henrich ◽  
Y. Wakamatsu ◽  
J. Wittbrodt

In early vertebrate eye development, the retinal anlage is specified in the anterior neuroectoderm. During neurulation, the optic vesicles evaginate from the lateral wall of the prosencephalon. Here we describe the temperature-sensitive mutation eyeless in the Japanese medakafish. Marker gene analysis indicates that, whereas, specification of two retinal primordia and proximodistal patterning takes place in the mutant embryo, optic vesicle evagination does not occur and subsequent differentiation of the retinal primordia is not observed. The mutation eyeless thus uncouples patterning and morphogenesis at early steps of retinal development. Temperature-shift experiments indicate a requirement for eyeless activity prior to optic vesicle evagination. Cell transplantation shows that eyeless acts cell autonomously.

1987 ◽  
Vol 88 (2) ◽  
pp. 241-250
Author(s):  
LAI-WA TAM ◽  
STEPHEN F. NG

Reduction in the length of the oral apparatus produced by the temperature-sensitive mutation short-1 (sh1) involved suppressed growth of the oral primordium in all stages of development. Temperature shift-up and heat-shock experiments revealed that the temperature-sensitive period of this mutation coincided with nearly the entire stomatogenic phase (stages 1–6) in sexual reproduction. Low- and high-sensitivity phases were noted, corresponding to the periods of slow (stages 1 and 2) and rapid (stage 3 to stage 6) elongation of the oral primordium, respectively. The action of sh1 is thus concentrated after stage 2. The mutation hypothetically results in defective membrane growth and extension in the oral primordium, leading to restriction in incorporation of basal bodies into the developing membranelles.


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4599-4609 ◽  
Author(s):  
S. Fuhrmann ◽  
E.M. Levine ◽  
T.A. Reh

The vertebrate eye develops from the neuroepithelium of the ventral forebrain by the evagination and formation of the optic vesicle. Classical embryological studies have shown that the surrounding extraocular tissues - the surface ectoderm and extraocular mesenchyme - are necessary for normal eye growth and differentiation. We have used explant cultures of chick optic vesicles to study the regulation of retinal pigmented epithelium (RPE) patterning and differentiation during early eye development. Our results show that extraocular mesenchyme is required for the induction and maintenance of expression of the RPE-specific genes Mitf and Wnt13 and the melanosomal matrix protein MMP115. In the absence of extraocular tissues, RPE development did not occur. Replacement of the extraocular mesenchyme with cranial mesenchyme, but not lateral plate mesoderm, could rescue expression of the RPE-marker Mitf. In addition to activating expression of RPE-specific genes, the extraocular mesenchyme inhibits the expression of the neural retina-specific transcription factor Chx10 and downregulates the eye-specific transcription factors Pax6 and Optx2. The TGF(β) family member activin can substitute for the extraocular mesenchyme by promoting expression of the RPE-specific genes and downregulating expression of the neural retina-specific markers. These data indicate that extraocular mesenchyme, and possibly an activin-like signal, pattern the domains of the optic vesicle into RPE and neural retina.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Molly C Jud ◽  
Josh Lowry ◽  
Thalia Padilla ◽  
Erin Clifford ◽  
Yuqi Yang ◽  
...  

AbstractMorphogenesis involves coordinated cell migrations and cell shape changes that generate tissues and organs, and organize the body plan. Cell adhesion and the cytoskeleton are important for executing morphogenesis, but their regulation remains poorly understood. As genes required for embryonic morphogenesis may have earlier roles in development, temperature-sensitive embryonic-lethal mutations are useful tools for investigating this process. From a collection of ∼200 such Caenorhabditis elegans mutants, we have identified 17 that have highly penetrant embryonic morphogenesis defects after upshifts from the permissive to the restrictive temperature, just prior to the cell shape changes that mediate elongation of the ovoid embryo into a vermiform larva. Using whole genome sequencing, we identified the causal mutations in seven affected genes. These include three genes that have roles in producing the extracellular matrix, which is known to affect the morphogenesis of epithelial tissues in multicellular organisms: the rib-1 and rib-2 genes encode glycosyltransferases, and the emb-9 gene encodes a collagen subunit. We also used live imaging to characterize epidermal cell shape dynamics in one mutant, or1219ts, and observed cell elongation defects during dorsal intercalation and ventral enclosure that may be responsible for the body elongation defects. These results indicate that our screen has identified factors that influence morphogenesis and provides a platform for advancing our understanding of this fundamental biological process.


Genetics ◽  
1975 ◽  
Vol 81 (1) ◽  
pp. 143-162 ◽  
Author(s):  
David L Shellenbarger ◽  
J Dawson Mohler

ABSTRACT Temperature-conditional mutations of the Notch locus were characterized in an attempt to understand the organization of a "complex locus" and the control of its function in development. Among 21 newly induced Notch alleles, about one-half are temperature-conditional for some effects, and three are temperature-sensitive for viability. One temperature-sensitive lethal, l(1)Nts1, is functionally non-complementing for all known effects of Notch locus mutations and maps at a single site within the locus. Among the existing alleles involved in complex patterns of interallelic complementation, Ax59d5 is found to be temperature-sensitive, while fag, spl, and l(1)N are temperature-independent. Whereas temperature-sensitive alleles map predominantly to the right-most fifth of the locus, fag, spl, and l(1)N are known to map to the left of this region. Temperature-shift experiments demonstrate that fag, spl, and l(1)N cause defects at specific, non-overlapping times in development.—We conclude (1) that the Notch locus is a single cistron (responsible for a single functional molecule, presumably a polypeptide); (2) that the right-most fifth of the locus is, at least in part, the region involved in coding for the Notch product; (3) that the complexity of interallelic complementation is a developmental effect of mutations that cause defects at selected times and spaces, and that complementation occurs because the mutant defects are temporally and spatially non-overlapping; and (4) that mutants express selected defects due to critical temporal and spatial differences in the chemical conditions controlling the synthesis or function of the Notch product. The complexity of the locus appears to reside in controlling the expression (synthesis or function) of the Notch product in development.


Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1675-1695 ◽  
Author(s):  
Frans E Tax ◽  
James H Thomas ◽  
Edwin L Ferguson ◽  
H Robert Horvitzt

Abstract We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-l7, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup1 7 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup1 7and lag-2, suggest that both genes act at approximately the same time as lin-12in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.


Development ◽  
1975 ◽  
Vol 34 (1) ◽  
pp. 221-252
Author(s):  
Par Maria Fernandez ◽  
Jean-Claude Beetschen

1. At the feeding stage (st. 38), a high percentage (79 %) of Pleurodeles homozygous ac/ac larvae show bent tails after a persistent ascitic blister in the dorsal part of the fin, when embryonic development occurred at 12°C; about only 25 % of them are affected by abdominal and pericardic ascites; about 40 % can feed and survive. The larval phenotype is very different when embryonic development occurred at 23 °C, in which case tail growth appears to be normal, but 95 % larvae die, due to ascitic fluid collection in the abdominal and heart regions, marked anaemia and microcephaly. 2. The exchange of posterior neural plates and dorso-lateral epidermis between normal and mutant neurulae has shown that the localization of the blister in the dorsal fin is not dependent on autonomous properties of the mutant dorsal tissues, but should be considered as resulting from general disturbances in the mutant organism. 3. Experiments were performed, involving a temperature shift from 12 to 23°C or 23 to 12°C, occurring at various developmental stages from the end of gastrulation (stage 13) to the stage of spontaneous embryonic muscle contractions (stage 26). When the temperature shift was applied after the end of neurulation (stage 21), the caudal phenotype was statistically similar to that of larvae which had been bred continuously at the first temperature. Thus temperature-sensitive phases can be characterized between neurula stages 15 and 18 (for a 12–23° shift) or 15 and 21 (for a 23–12° shift). Similarly, abdominal ascites can be induced when embryos are kept at 23 °C till stage 23 (early tail-bud) only, and occurs much less frequently when embryos are kept at 12°C till stage 23 and then transferred to 23°C. 4. It could be concluded from these experiments that the caudal mutant phenotype is already temperature-determined during neurulation, before stage 21. Nevertheless, double temperature-shift experiments showed that the second shift could modify the results which would be obtained if the first shift only occurred. Paradoxical results were obtained, more than 90 % of the tail phenotypes being of the ‘warm type’ when the embryos were first kept at 12°C, then shifted up to 23 °C between stages 22 and 26, and shifted down again to 12°C. Such a treatment markedly lowers the percentage of bent tails (‘cold type’) from the percentage which would occur if ac/ac embryos were constantly kept at 23 °C after stage 21, but this longer warm treatment is of no effect of itself as compared to the case when the whole development occurs at 12°C (bent tails are predominant in this latter case). Thus, whereas the early determination of the position of the caudal blister can be considered as a stable phenomenon under given temperature conditions, it is not irreversible. 5. As compared to cold-bred larvae, thrice as many completely anaemic larvae (66 %) were obtained from ac/ac embryos kept at 23 °C between stages 21 and 26; this offers an opportunity for the experimental study of this anaemia. 6. Implications of these results for further analysis of temperature-sensitive mutations in cold-blooded vertebrates are suggested.


1990 ◽  
Vol 10 (11) ◽  
pp. 5688-5699
Author(s):  
B E Wojcik ◽  
J J Dermody ◽  
H L Ozer ◽  
B Mun ◽  
C K Mathews

JB3-B is a Chinese hamster ovary cell mutant previously shown to be temperature sensitive for DNA replication (J. J. Dermody, B. E. Wojcik, H. Du, and H. L. Ozer, Mol. Cell. Biol. 6:4594-4601, 1986). It was chosen for detailed study because of its novel property of inhibiting both polyomavirus and adenovirus DNA synthesis in a temperature-dependent manner. Pulse-labeling studies demonstrated a defect in the rate of adenovirus DNA synthesis. Measurement of deoxyribonucleoside triphosphate (dNTP) pools as a function of time after shift of uninfected cultures from 33 to 39 degrees C revealed that all four dNTP pools declined at similar rates in extracts prepared either from whole cells or from rapidly isolated nuclei. Ribonucleoside triphosphate pools were unaffected by a temperature shift, ruling out the possibility that the mutation affects nucleoside diphosphokinase. However, ribonucleotide reductase activity, as measured in extracts, declined after cell cultures underwent a temperature shift, in parallel with the decline in dNTP pool sizes. Moreover, the activity of cell extracts was thermolabile in vitro, consistent with the model that the JB3-B mutation affects the structural gene for one of the ribonucleotide reductase subunits. The kinetics of dNTP pool size changes after temperature shift are quite distinct from those reported after inhibition of ribonucleotide reductase with hydroxyurea. An indirect effect on ribonucleotide reductase activity in JB3-B has not been excluded since human sequences other than those encoding the enzyme subunits can correct the temperature-sensitive growth defect in the mutant.


Development ◽  
2000 ◽  
Vol 127 (5) ◽  
pp. 945-956 ◽  
Author(s):  
J.M. Collinson ◽  
R.E. Hill ◽  
J.D. West

Chimaeric mice were made by aggregating Pax6(−/−) and wild-type mouse embryos, in order to study the interaction between the optic vesicle and the prospective lens epithelium during early stages of eye development. Histological analysis of the distribution of homozygous mutant cells in the chimaeras showed that the cell-autonomous removal of Pax6(−/−) cells from the lens, shown previously at E12.5, is nearly complete by E9.5. Most mutant cells are eliminated from an area of facial epithelium wider than, but including, the developing lens placode. This result suggests a role for Pax6 in maintaining a region of the facial epithelium that has the tissue competence to undergo lens differentiation. Segregation of wild-type and Pax6(−/−) cells occurs in the optic vesicle at E9.5 and is most likely a result of different adhesive properties of wild-type and mutant cells. Also, proximo-distal specification of the optic vesicle (as assayed by the elimination of Pax6(−/−) cells distally), is disrupted in the presence of a high proportion of mutant cells. This suggests that Pax6 operates during the establishment of patterning along the proximo-distal axis of the vesicle. Examination of chimaeras with a high proportion of mutant cells showed that Pax6 is required in the optic vesicle for maintenance of contact with the overlying lens epithelium. This may explain why Pax6(−/−) optic vesicles are inefficient at inducing a lens placode. Contact is preferentially maintained when the lens epithelium is also wild-type. Together, these results demonstrate requirements for functional Pax6 in both the optic vesicle and surface epithelia in order to mediate the interactions between the two tissues during the earliest stages of eye development.


1988 ◽  
Vol 8 (6) ◽  
pp. 2335-2341
Author(s):  
R J Akhurst ◽  
N B Flavin ◽  
J Worden

A new variant rat myogenic cell line, ts485, was isolated by subcloning the cell line ts3b2 (H. T. Nguyen, R. M. Medford, and B. Nadal-Ginard, Cell 34:281-293, 1983). Unlike the progenitor cell line, ts485 was thermosensitive for differentiation. Experiments with conditioned medium suggested that diffusible extracellular factors were not involved in dictating the differential phenotypes of ts485 cells cultured at the permissive and nonpermissive temperatures. Temperature shift experiments performed on cultures of ts485 cells indicated that the temperature-sensitive lesion was in a factor active during the growth phase and required to trigger a cascade of events leading to terminal differentiation.


Development ◽  
1991 ◽  
Vol 112 (4) ◽  
pp. 1053-1061 ◽  
Author(s):  
A.P. Monaghan ◽  
D.R. Davidson ◽  
C. Sime ◽  
E. Graham ◽  
R. Baldock ◽  
...  

The mouse Hox-7.1 gene has previously been shown to be related to the Drosophila Msh homeobox-containing gene. Here we report the isolation of a new member of this family which resides at an unlinked chromosomal location and has been designated Hox-8.1. Both Hox-7.1 and Hox-8.1 are expressed in the mouse embryo during the early stages of eye development in a distinct spatial and temporal relationship. Hox-8.1 is expressed in the surface ectoderm and in the optic vesicle before invagination occurs in regions corresponding to the prospective corneal epithelium and neural retina, respectively. Hox-7.1 is expressed after formation of the optic cup, marking the domain that will give rise to the ciliary body. The activity of these genes indicates that the inner layer of the optic cup is differentiated into three distinct compartments before overt cellular differentiation occurs. Our results suggest that these genes are involved in defining the region that gives rise to the inner layer of the optic cup and in patterning this tissue to define the iris, ciliary body and retina.


Sign in / Sign up

Export Citation Format

Share Document