Binary cell death decision regulated by unequal partitioning of Numb at mitosis

Development ◽  
2002 ◽  
Vol 129 (20) ◽  
pp. 4677-4684 ◽  
Author(s):  
Virginie Orgogozo ◽  
François Schweisguth ◽  
Yohanns Bellaïche

An important issue in Metazoan development is to understand the mechanisms that lead to stereotyped patterns of programmed cell death. In particular, cells programmed to die may arise from asymmetric cell divisions. The mechanisms underlying such binary cell death decisions are unknown. We describe here a Drosophila sensory organ lineage that generates a single multidentritic neuron in the embryo. This lineage involves two asymmetric divisions. Following each division, one of the two daughter cells expresses the pro-apoptotic genes reaper and grim and subsequently dies. The protein Numb appears to be specifically inherited by the daughter cell that does not die. Numb is necessary and sufficient to prevent apoptosis in this lineage. Conversely, activated Notch is sufficient to trigger death in this lineage. These results show that binary cell death decision can be regulated by the unequal segregation of Numb at mitosis. Our study also indicates that regulation of programmed cell death modulates the final pattern of sensory organs in a segment-specific manner.

1999 ◽  
Vol 112 (10) ◽  
pp. 1541-1551 ◽  
Author(s):  
M. Tio ◽  
M. Zavortink ◽  
X. Yang ◽  
W. Chia

Cellular diversity in the Drosophila central nervous system is generated through a series of asymmetric cell divisions in which one progenitor produces two daughter cells with distinct fates. Asymmetric basal cortical localisation and segregation of the determinant Prospero during neuroblast cell divisions play a crucial role in effecting distinct cell fates for the progeny sibling neuroblast and ganglion mother cell. Similarly asymmetric localisation and segregation of the determinant Numb during ganglion mother cell divisions ensure that the progeny sibling neurons attain distinct fates. The most upstream component identified so far which acts to organise both neuroblast and ganglion mother cell asymmetric divisions is encoded by inscuteable. The Inscuteable protein is itself asymmetrically localised to the apical cell cortex and is required both for the basal localisation of the cell fate determinants during mitosis and for the orientation of the mitotic spindle along the apical/basal axis. Here we define the functional domains of Inscuteable. We show that aa252-578 appear sufficient to effect all aspects of its function, however, the precise requirements for its various functions differ. The region, aa288-497, is necessary and sufficient for apical cortical localisation and for mitotic spindle (re)orientation along the apical/basal axis. A larger region aa288-540 is necessary and sufficient for asymmetric Numb localisation and segregation; however, correct localisation of Miranda and Prospero requires additional sequences from aa540-578. The requirement for the resolution of distinct sibling neuronal fates appears to coincide with the region necessary and sufficient for Numb localisation (aa288-540). Our data suggest that apical localisation of the Inscuteable protein is a necessary prerequisite for all other aspects of its function. Finally, we show that although inscuteable RNA is normally apically localised, RNA localisation is not required for protein localisation or any aspects of inscuteable function.


Development ◽  
2001 ◽  
Vol 128 (20) ◽  
pp. 4103-4112
Author(s):  
Marc R. Freeman ◽  
Chris Q. Doe

In many organisms, single neural stem cells can generate both neurons and glia. How are these different cell types produced from a common precursor? In Drosophila, glial cells missing (gcm) is necessary and sufficient to induce glial development in the CNS. gcm mRNA has been reported to be asymmetrically localized to daughter cells during precursor cell division, allowing the daughter cell to produce glia while precursor cell generates neurons. We show that (1) gcm mRNA is uniformly distributed during precursor cell divisions; (2) the Prospero transcription factor is asymmetrically localized into the glial-producing daughter cell; (3) Prospero is required to upregulate gcm expression and induce glial development; and (4) mislocalization of Prospero to the precursor cell leads to ectopic gcm expression and the production of extra glia. We propose a novel model for the separation of glia and neuron fates in mixed lineages in which the asymmetric localization of Prospero results in upregulation of gcm expression and initiation of glial development in only precursor daughter cells.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Chia Huei Tan ◽  
Ivana Gasic ◽  
Sabina P Huber-Reggi ◽  
Damian Dudka ◽  
Marin Barisic ◽  
...  

Chromosome alignment in the middle of the bipolar spindle is a hallmark of metazoan cell divisions. When we offset the metaphase plate position by creating an asymmetric centriole distribution on each pole, we find that metaphase plates relocate to the middle of the spindle before anaphase. The spindle assembly checkpoint enables this centering mechanism by providing cells enough time to correct metaphase plate position. The checkpoint responds to unstable kinetochore–microtubule attachments resulting from an imbalance in microtubule stability between the two half-spindles in cells with an asymmetric centriole distribution. Inactivation of the checkpoint prior to metaphase plate centering leads to asymmetric cell divisions and daughter cells of unequal size; in contrast, if the checkpoint is inactivated after the metaphase plate has centered its position, symmetric cell divisions ensue. This indicates that the equatorial position of the metaphase plate is essential for symmetric cell divisions.


1972 ◽  
Vol 11 (3) ◽  
pp. 723-737
Author(s):  
ELIZABETH G. CUTTER ◽  
CHING-YUAN HUNG

In the roots of Hydrocharis morsus-ranae, certain cells of the protoderm divide asymmetrically to form a small, highly cytoplasmic trichoblast proximally, and a larger, more vacuolate epidermal cell distally. The former develops as a root hair without further division; the latter divides several times to form ordinary epidermal cells. During mitosis, presumed dictyosome vesicles and fragments or sections of reticulated or serrate sheets of ER, aligned with the spindle microtubules, were observed among the chromosomes as early as metaphase, suggesting that the portions of ER were involved in formation of the cell plate or in some other function in the equatorial region. A pre-prophase band of microtubules was not observed. Asymmetric divisions differ from symmetric ones in the skewed orientation of the metaphase plate, the formation of a curved, rather wavy cell wall and the slightly greater vacuolation of one daughter cell. Less difference in the ultrastructure of the daughter cells resulting from an asymmetric division was observed in this rather slowly growing material than in other examples previously described in the literature.


Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3607-3614 ◽  
Author(s):  
Y. Tabuse ◽  
Y. Izumi ◽  
F. Piano ◽  
K.J. Kemphues ◽  
J. Miwa ◽  
...  

Asymmetric cell divisions, critically important to specify cell types in the development of multicellular organisms, require polarized distribution of cytoplasmic components and the proper alignment of the mitotic apparatus. In Caenorhabditis elegans, the maternally expressed protein, PAR-3, is localized to one pole of asymmetrically dividing blastomeres and is required for these asymmetric divisions. In this paper, we report that an atypical protein kinase C (PKC-3) is essential for proper asymmetric cell divisions and co-localizes with PAR-3. Embryos depleted of PKC-3 by RNA interference die showing Par-like phenotypes including defects in early asymmetric divisions and mislocalized germline-specific granules (P granules). The defective phenotypes of PKC-3-depleted embryos are similar to those exhibited by mutants for par-3 and another par gene, par-6. Direct interaction of PKC-3 with PAR-3 is shown by in vitro binding analysis. This result is reinforced by the observation that PKC-3 and PAR-3 co-localize in vivo. Furthermore, PKC-3 and PAR-3 show mutual dependence on each other and on three of the other par genes for their localization. We conclude that PKC-3 plays an indispensable role in establishing embryonic polarity through interaction with PAR-3.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2781-2781
Author(s):  
Nancy S Day ◽  
Evan Shereck ◽  
Janet Ayello ◽  
Catherine McGuinn ◽  
Prakash Satwani ◽  
...  

Abstract Abstract 2781 Background. Umbilical cord blood (UCB) is a viable alternative source of allogeneic hematopoietic stem cells for the treatment of both malignant and non-malignant disease (Cairo et al BBMT 2008). UCB transplantation (UCBT) is known to be associated with decrease severe acute graft-versus-host disease (GvHD) compared to unrelated bone marrow (BM) and peripheral blood (PB) transplantation; however, it is associated with delayed hematopoietic and immune reconstitution (Szabolcs/Cairo et al Seminars in Hematology 2010). NK cells play important roles in both innate and adaptive immunity and are characterized as a CD56+ cell population. NK cell recovery is prompt by 2 months after hematopoietic stem cell transplantation (HSCT), while T-cell (after at least 9 mo HSCT) and B-cell (after 3 to 4 mo HSCT) reconstitutions are gradual and delayed. CD56+dim cells are primarily cytotoxic and make up 90% of PB NK populations (Shereck/Cairo PBC 2007). We previously demonstrated the ability to ex-vivo expand CB MNC into various phenotypes of CD56+dim and CD56+bright NK cells (totally 60%) and NKT cells (40%) with profound in vitro and in vivo cytotoxicity against hematological malignancies (Ayello/Cairo BBMT 2006 & Exp. Hematology 2009). Proteomic studies from our group demonstrated differential protein expression including ↑NKG2A, ↓IP3R type 3, ↓MAPKAPK5, and ↑NOTCH 2 in CB vs PB CD56+dim (Shereck/Cairo, ASH 2007; Shereck/Day/Cairo, ASBMT 2009). Objective. In these studies, we sought to determine the similarity or differences in genetic signatures in CB vs APB CD56+dim NK cells. Methods. CB MNCs were isolated on a ficoll gradient and NK CD56+16+dim cells isolated using a 2-step magnetic activated cell separation (MACS) process via a standard kit (Miltenyi Biotec). Enrichment was at least 94%. Isolated RNA from CB and PB CD56+dim cells were subjected to microarray studies (Affymetrix, U133A_2) as we have previously described (Jiang/Cairo et al J Immunol 2004). Data were analyzed by Agilent GeneSpring and Ingenuity pathway analyses. Welch test were used to perform statistical analysis and fold change of < 1.5 and values of p<0.05 were considered to be significant. Two-color ECL Plex fluorescence Western blotting (WB) was preformed to validate the proteomic data. Protein samples were separated using SDS-PAGE followed by transblotting. WB membranes were then incubated with target and control (GAPDH) primary antibodies. After rinse and wash, the membranes were further incubated with CY5 and CY3 conjugated secondary antibodies. The membranes were scanned with TYPHOON by green (532 laser and 580 filter) and red (633 laser and 670 filter) setting for CY3 and CY5, respectively, and then observed and quantified using ImageQuant. Results. CB vs PB CD56+dim cells significantly altered expressed 796 genes, in which 486 genes were over expressed, at the genomic level including: pro-apoptotic genes: CASP10 (3.1F), TNFSF11 (4.7F), CDC2 (3.0F), BCL2L1 (4.3F), NOTCH2 (1.5F); and cell development: PBX1 (7.6F), IL1RN (5.1F), CD24 (5.3F), CD34 (3.5F), CD55 (2.1F), CCL13 (2.2F). Conversely, there was significant under expression of NF1 (5.1F), MAP2K3 (1.7F), PIK3CD (2.1F), BAX (2.9F), and JUN (2.2F). Our WB results indicate that NOTCH2 (2.4F) and PBX1 (2.2F) proteins are increased in CB vs PB CD56+dim NK cells, consistent with our proteomic results. Conclusion. These results suggest that CB vs PB CD56+dim NK are more prone to undergo programmed cell death (apoptosis) secondary to over expression of numerous pro-apoptotic genes, and may be earlier in development (pro-NK) with over expression of the CD34 gene. Furthermore, decrease CB vs PB NK cytotoxicity maybe in part secondary to increase programmed cell death in particularly increase NOTCH2 at the genomic and proteomic levels. (The first two authors contribute equally.) Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4616-4616
Author(s):  
Haiming Xu ◽  
Tony R Deblassio ◽  
Scott A. Armstrong ◽  
Stephen Nimer

Abstract The myelodysplastic syndromes (MDS) are clonal stem cell disorders, characterized by ineffective hematopoiesis leading to cytopenias and a high rate of progression to acute myeloid leukemia (AML). The NUP98-HOXD13 (NHD13) fusion has been found in patients with MDS and AML. A transgenic (Tg) mouse model, generated by Peter Aplan’s group, which utilizes Vav 1 regulatory elements to direct expression of the NHD13 transgene in hematopoietic tissues, displays the phenotypic features of MDS including a chronic phase of cytopenias followed by transformation to AML (Lin et al., 2005). We previously reported that loss of one or both alleles of p53 did not rescue the MDS phenotype in NHD13+ Tg mice, but rather exacerbated the MDS phenotype and accelerated the development of AML (Xu et al., 2012). Expression of p21WAF1/CIP1(p21) was increased in the Lin−Sca-1+c-Kit+ (LSK) cells isolated from NHD13+ Tg mice, so we generated and analyzed NHD13+p21+/– and NHD13+p21–/– mice to further investigate whether the accelerated MDS and AML that occurs in the absence of p53 relates to the defective expression of the p53 target gene. Deletion of p21 significantly altered the fate of the NHD13+ Tg mice. All of the NHD13+p21–/– mice died of AML, rather than MDS. Only 18% (4 out of total 22 mice) of the NHD13+p21+/– mice developed MDS with a median survival of 289 d; in contrast 31% (9 out of total 29 mice) of NHD13+ Tg mice died from MDS, with a median survival of 230 d (p<0.05). We examined the peripheral blood counts of the “clinically healthy” NHD13+p21–/– mice at 3 to 5 months, and found increased white blood cell (WBC) and neutrophil (NE) counts, compared to the age matched NHD13+ Tg mice. Clearly the deletion of one or two alleles of p21 increases the median survival of NHD13+ Tg mice with MDS, and the complete loss of p21 rescues the fatal MDS induced by NHD13 fusion gene. However the deletion of one or two p21 alleles does not significantly affect the development of AML, which in 82% of NHD13+p21+/– mice resulting in a median survival of 291 d, AML in the NHD13+p21–/– mice was with a median survival of 320 d, and 69% of NHD13+ Tg mice showed AML with a median survival of 315 d. p21 is important for maintaining a normal-sized HSPC pool (Cheng et al., 2000), and both p21 and p53 have been shown to be involved in the determination of asymmetric vs symmetric cell divisions of epithelial cells (O’Brien et al., 2012; Cicalese et al., 2009). To determine whether the symmetric division of NHD13+ HSCs is affected by the loss of p21 or p53 in vitro, we performed paired daughter cell assays. Single LSKCD34–Flt3–CD150+ cells isolated from wild type (WT), NHD13+, NHD13+p21–/– and NHD13+p53–/– mice bone marrow were sorted into 96-well plates one cell/well. After the first cell division, the two daughter cells were split into two wells for 12 days in culture. We examined the ability of sorted single LSKCD34–Flt3–CD150+ cells to generate daughter cells that retain multipotent lineage differentiation potential and found that NHD13+p53–/– CD150+CD34–Flt3–LSK cells underwent symmetric self-renewal divisions 85% of the time (both daughter cells are multipotent), with 15% asymmetric divisions (only one daughter cell is multipotent); the NHD13+p21–/– CD150+CD34–Flt3–LSK cells produced 13% symmetric self-renewal divisions, 50% asymmetric divisions and 37% symmetric commitment divisions (both daughter cells are not multipotent); the NHD13+ CD150+CD34–Flt3–LSK cells produced 50% symmetric self-renewal divisions, 40% asymmetric divisions and 10% symmetric commitment divisions; and the WT CD150+CD34–Flt3–LSK cells produced 27% symmetric self-renewal divisions, 42% asymmetric divisions and 31% symmetric commitment divisions. These data indicate that loss of p53 increases symmetric self-renewal divisions of NHD13+ HSCs, and loss of p21 increases asymmetric self-renewal divisions of NHD13+ HSC in vitro. Collectively, our data indicate that loss of p21 maintains the survival of MDS driven by NUP98-HOXD13 fusion, which is independent of the function of p53; and the increased asymmetric self-renewal divisions of NHD13+p21–/– HSCs may contribute to the increased survival observed in NHD13+p21–/– MDS mice. Disclosures Armstrong: Epizyme : Consultancy.


Neuron ◽  
1995 ◽  
Vol 14 (5) ◽  
pp. 913-925 ◽  
Author(s):  
Ming Guo ◽  
Ethan Bier ◽  
Lily Yeh Jan ◽  
Yuh Nung Jan

2011 ◽  
Vol 63 (3) ◽  
pp. 527-535
Author(s):  
G. Brajuskovic ◽  
Milica Strnad ◽  
Snezana Cerovic ◽  
Stanka Romac

Apoptosis or programmed cell death is a genetically regulated process of cellular suicide. Apoptosis has been implicated in a wide range of pathological conditions, and mutations in apoptotic genes play important roles in the process of malignant transformation. Chronic leukemia represents a neoplastic disorder caused primarily by defective programmed cell death, as opposed to increased cell proliferation. This paper presents the main results of our ten-year research on the apoptosis of leukemia cells. The research included the morphological aspects of the process, the effect of antineoplastic agents on the induction of apoptosis in leukemia cells and expression analysis of the proteins involved in programmed cell death. Special attention was paid to the expression and interaction of the Bcl-2 family of proteins in leukemia cells. The ultimate aim of the study of apoptosis of leukemic cells is the discovery of new biological agents that might be used in the treatment of chronic leukemia.


2005 ◽  
Vol 13 (1) ◽  
pp. 19-22 ◽  
Author(s):  
Goran Brajuskovic

Apoptosis is a special type of cell death essentially different from necrosis in nature and biological significance. It is an active process of genetically regulated cell auto destruction and in most cases has a homeostatic function. Apoptotic cells may be characterized by specific morphological and biochemical changes. A great number of genes are known today, whose protein products take part in regulation of the apoptotic process. Apoptosis or programmed cell death has been implicated in a wide range of pathological conditions. Studies of the correlation of programmed cell death with proliferation and the multistage carcinogenesis process are in the focus of modern research. Mutations and deletions of apoptotic genes play important roles in carcinogenesis, tumor growth, and tumor regression. This article reviews the current knowledge on mutations of apoptosis genes involved in pathogenesis of human cancers. Finally, we have recently summarized achievements in cancer therapy with a focus on the apoptotic genes.


Sign in / Sign up

Export Citation Format

Share Document